DOI QR코드

DOI QR Code

Effect of Different Height of Side Vents on Microclimate in a Single-Span Greenhouse during Natural Ventilation

측창 개폐 높이에 따른 자연환기 단동온실의 미기상환경 비교 분석

  • Kim, Seong-Heon (Division of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Hyung-Kweon (Division of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Lee, Si-Young (Division of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Kwon, Jin-Kyung (Division of Agricultural Engineering, National Institute of Agricultural Sciences, RDA)
  • 김성헌 (국립농업과학원 농업공학부) ;
  • 김형권 (국립농업과학원 농업공학부) ;
  • 이시영 (국립농업과학원 농업공학부) ;
  • 권진경 (국립농업과학원 농업공학부)
  • Received : 2022.01.04
  • Accepted : 2022.04.14
  • Published : 2022.04.30

Abstract

This study was carried out to investigate the effect of side vent heights on temperature and relative humidity inside and outside the single-span plastic greenhouse (W: 7 m, L: 40 m H: 3.9 m) during natural ventilation. Four different heights (120, 100, 80, 60 cm) of the side vent were used as an experimental condition. Variations of temperature and relative humidity inside and outside the greenhouse and the differences between heights were compared by using one-way ANOVA. In the daytime, the difference in temperature between inside and outside the greenhouse was dropped from 14.0℃ to 7.1℃ as the side vent height increased. The temperature difference in the nighttime was less than 0.2℃ regardless of the height. One-way ANOVA on the temperature difference between heights presented that the statistical significance was founded between all of the combinations of height in the daytime. The difference in relative humidity between inside and outside the greenhouse was grown from -13.8% to -22.2% with a decrease in the side vent height. The humidity difference in the nighttime was less than 1% regardless of the height. One-way ANOVA on the humidity difference revealed that most of the side vent heights showed significance in the daytime but between 100 and 80 cm was not significant. It seemed because the external air became cooler during the experiment with a height of 80 cm. Conclusively, this study empirically demonstrated that the higher side vents resulted in the decrease of differences in temperature and relative humidity between inside and outside the greenhouse, and also the effect of side vent height was statistically significant. This study may be helpful for deciding the height of the side vent effective for controlling temperature and relative humidity in a single-span greenhouse during natural ventilation.

본 연구는 블루베리를 재배하는 12-단동-1 규격의 온실에서 자연환기 시 측창 개폐 높이에 따른 온실 내외부 온습도 환경변화를 통계적으로 구명하기 위해 수행되었다. 측창 개폐 높이는 120, 100, 80, 60cm로 설정하였으며, 높이별 온실 내외부 온습도 차이의 변화를 주야간별로 비교·분석하였다. 또한 측창 개폐 높이에 따른 온습도 변화의 유의성을 검증하기 위해 One-way ANOVA을 수행하였다. 주간 실내외 기온차의 경우 측창 개폐 높이가 60cm에서 120cm로 높아질 때 실내외 기온차는 약 14.0℃에서 7.1℃로 감소했으며, 야간 실내외 기온차는 측창 개폐 높이와 상관없이 0.2℃ 미만이었다. 측창 개폐 높이별 주간 기온차의 유의성을 분석한 결과, 모든 높이에서 유의성이 확인되었다. 상대습도의 경우, 측창 개폐 높이가 120cm에서 60cm로 낮아질 때 실내외 상대습도 차이는 약 -13.8%에서 -22.2%로 증가하였으며, 야간 상대습도 차이는 높이와 상관없이 1% 미만으로 측정되었다. 측창 개폐 높이별 주간 상대습도 차이의 유의성을 분석한 결과, 그룹 대부분에서 상대습도 차이의 유의성이 확인되었지만 100cm와 80cm 사이에서는 통계적 유의성이 발견되지 않았다. 이는 측창 개폐 높이가 80cm일 때 외기온이 상대적으로 낮아졌기 때문으로 판단된다.결과적으로 본 실험을 통해 측창 개폐 높이가 높을수록 원활한 환기로 인해 내외부 온습도 차이가 줄어드는 경향을 확인하였으며, 측창 개폐 높이가 온습도 차이에 유의한 영향을 미친다는 사실을 실증적으로 확인하였다. 본 연구는 온실 내외부 온습도 차이에 따른 효과적인 측창 개폐 높이를 결정하는 데 필요한 기초 자료로 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 2021년도 농촌진흥청 국립농업과학원 연구개발사업(과제번호: PJ01425701)의 지원에 의해 이루어진 것임.

References

  1. American Society of Agricultural Engineers (ASAE) 2003, ASAE Standards : Heating, ventilating and cooling greenhouses. ASAE. St. Joseph, MI, USA, pp 699-707.
  2. Fernandez J.E., and B.J. Bailey 1992, Measurement and prediction of greenhouse ventilation rates. Agric For Meteorol 58:229-245. doi:10.1016/0168-1923(92)90063-A
  3. Kim M.K., S.W. Nam, W.M. Seo, Y.C. Yoon, S.G. Lee, and H.W. Lee 2000, Agricultural structures engineering. Hyangmoonsa Publication, Seoul, Korea. (in Korean)
  4. Kucuk U., M. Eyuboglu, H.O. Kucuk, and G. Degirmencioglu 2016, Importance of using proper post hoc test with ANOVA. Int J Cardiol 15:209-346. doi:10.1016/j.ijcard.2015.11.061
  5. Kwon Y.S., S.H. Lee, H.M. Shin, S.Y. Nam, Y.J. Oh, and D.I. Ki 2016, The effect of vigor of a bearing shoot in 'Bluecrop' highbush blueberry (Vaccinium corymbosum L.) on growth characteristics of shoots and fruits. Korean J Plant Res 29:598-603. (in Korean) doi:10.7732/kjpr.2016.29.5.598
  6. Lee T.S., G.C. Kang, H.K. Kim, J.P. Moon, S.S. Oh, and J.K. Kwon 2017, Analysis of air temperature and humidity distributions and energy consumptions according to use of air circulation fans in a single-span greenhouse. Protected Hort Plant Fac 26:276-282. (in Korean) doi:10.12791/KSBEC.2017.26.4.276
  7. Lee T.S., G.C. Kang, Y. Paek, J.P. Moon, S.S. Oh, and J.K. Kwon 2016, Analysis of temperature and humidity distributions according to arrangements of air circulation fans in single-span tomato greenhouse. Protected Hort Plant Fac 25:277-282. (in Korean) doi:10.12791/KSBEC.2016.25.4.277
  8. Ministry of Agriculture, Food and Rural Affairs (MAFRA) 2021, Status of Vegetable Greenhouse and Vegetable Production in 2020. MAFRA. Sejong, Korea. (in Korean)
  9. Morgan L. 2021, Hydroponics and protected cultivation: a practical guide. CAB International. Wallingford, Oxfordshire, UK, pp 35-36.
  10. Nam S.W. 2001, Roof ventilation structures and ridged vent effect for single span greenhouse of arch shape. CNU J Agric Sci 28:99-107. (in Korean)
  11. Nam S.W., Y.S. Kim, and A.J. Both 2011, Analysis on the ventilation performance of single-span tomato greenhouse with roof windows. J Bio-Env Con 20:78-82. (in Korean)
  12. Nam S.W., Y.S. Kim, and D.U. Seo 2014, Change is the plant temperature of tomato by fogging and airflow in plastic greenhouse. Protected Hort Plant Fac 23:11-18. (in Korean) doi:10.12791/KSBEC.2014.23.1.011
  13. Nam S.W., Y.S. Kim, G.H. Ko, and I.M. Sung 2012, Analysis on the installation criteria and ventilation effect for round root windows in single-span plastic greenhouses. CNU J Agric Sci 39:271-277. (in Korean) doi:10.7744/cnujas.2012.39.2.271
  14. Nam Y.I. 2003, Present status and developmental strategy of protected horticulture industry in Korea. Korean Natl Comm Irrig Drain J 10:15-23. (in Korean)
  15. Son J.E., I.S. Kim, J.M. Choi, and J.H. Bae 2021, Greenhouse horticulture. Hyangmoonsa Publication, Seoul, pp 144-146. (in Korean)
  16. Son J.E., and W.S. Choi 2000, Analysis of climatic factors during growing period of high-quality oak mushroom (Lentinus edodes (Berk) Sing). J Bio-Env Con 9:115-119. (in Korean)
  17. Son J.E. 2000. Thermal and ventilative characteristics of single-span oak mushroom production facility as affected by area of roof opening and shading rates. J Bio-Env Con 9:120-126. (in Korean)
  18. Wang S., T. Boulard, and R. Haxaire 2000, Measurement and analysis of air speed distribution in a naturally ventilated greenhouse. Acta Hortic 534:277-283. doi:10.17660/ActaHortic.2000.534.32