• Title/Summary/Keyword: roll-up side vent

Search Result 7, Processing Time 0.022 seconds

Development of roll - up ventilation system for pipe- constructed plastic film greenhouse (파이프 비닐온실용 권취식 창개폐기의 개발)

  • 이기명;박규식;김유일;김태홍
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.232-239
    • /
    • 1995
  • This study was carried out to get required torque data needed to design and develop a roll-up ventilation system in a pipe-constructed plastic film green-house. The results obtained from this study are as follows : 1. The required torques of a roll-up ventilation system in greenhouse are the functions of its length. The torques should multiplied by the conversion coefficients (2.0 in ceiling vent, 1.8 in side vent) in case of application. 2. In constructing pipe-constructed plastic film greenhouse, a shaft pipe is the largest essential element in roll - up shaft weight constitution which have an effect on the required torques. Therefore, the pipe should be light using nonferrous materials like aluminum alloy. 3. A planetary reduction ventilator of differential ring gear type is suitable for a roll-up ventilation system, because it can make high efficient reduction just using the first step shift.

  • PDF

A field survey on roof ventilation system of single-span plastic greenhouse in cucurbitaceae vegetable cultivation (박과작물 재배 단동 비닐하우스의 천장 환기시스템 설치 실태조사)

  • Yeo, Kyung-Hwan;Yu, In-Ho;Rhee, Han-Cheol;Cheong, Jae-Woan;Choi, Gyeong Lee
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.317-323
    • /
    • 2013
  • This research was conducted to obtain the basic information for establishment of standard guidelines in the design and installation of roof ventilation system in single-span plastic greenhouse. To achieve this, the greenhouse structure & characteristics, cultivation status, and ventilation system were investigated for single-span greenhouse with roof ventilation system cultivating the Cucurbitaceae vegetables, watermelon, cucumber, and oriental melon. Most of single-span watermelon greenhouse in Haman and Buyeo area were a hoop-style and the ventilation system in those greenhouses mostly consisted of two different types of 'roof vent (circular or chimney type) + side vent (hole) + fan' and 'roof vent (circular type) + side vent (hole or roll-up type)'. The diameter of circular and chimney-type vent was mostly 60cm and the average number of vents was 10.5 per a bay with vent spacing of average 6.75m. The ratio of roof vent area to floor area and side vent area in the single-span watermelon greenhouse with ventilation fan were 0.46% and 7.6%, respectively. The single-span cucumber greenhouse in Haman and Changnyeong area were a gable roof type, such as even span, half span, three quarter and the 70.6% of total investigated single-span greenhouses was equipped with a roof ventilation fan while 58.8% had a circulation fan inside the greenhouse. The ratios of roof vent area to floor area in the single-span cucumber greenhouse ranged from 0.61 to 0.96% and in the case of the square roof vent, were higher than that of the circular type vent. On average, the roof ventilation fan in single-span cucumber greenhouse was equipped with the power input of 210W and maximum air volume of $85.0m^3/min$, and the number of fans was 9.75 per a bay. The number of roof vent of single-span oriental melon greenhouse with only roll-up type side vent ranged from 8 to 21 (average 14.8), which was higher than that of other Cucurbitaceae vegetables while the vent number of the greenhouse with a roof ventilation fan was average 7 per a bay.

Effects of ventilation systems and set point temperature of single-span plastic greenhouse on disease incidence, fruit quality and yield of oriental melon (Cucumis melo L.) (참외재배 단동 비닐하우스의 환기방법과 설정온도가 병발병도,과실 수량 및 품질에 미치는 영향)

  • Yeo, Kyung-Hwan;Yu, In-Ho;Rhee, Han-Cheol;Choi, Gyeong-Lee;Lee, Seong-Chan;Lee, Jung-Sup
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.325-333
    • /
    • 2015
  • The ventilation systems composed three types of side vent (roll-up) 'SV', side vent+roof vent 'SV+RV', and side vent+roof fan 'SV+RF' with 7.5 m spacing, with specific set point temperatures for ventilation: SV ($35^{\circ}C$ open / $33^{\circ}C$ close), SV+RV or SV+RH ($35^{\circ}C$ open/$33^{\circ}C$ close for root ventilation and $37^{\circ}C$ open / $35^{\circ}C$ close for side vent). In the treatment of SV+RV, although the average daily maximum temperature inside the greenhouse temporarily increased by $38-40^{\circ}C$, thermal stress by high temperature did not occur and the disease incidence (%) of powdery mildew and downy mildew on the oriental melon were 25 - 75% lower than in the conventional SV treatment. In the SV treatment, the disease incidence (%) of powdery mildew and downy mildew were 1.4 - 7.7% and 4.2 - 15.9% for 'Deabakkul', and 20.3 - 22.8% and 2.8 - 11.3%, for 'Ildeungkkul'. The yield for one month was higher in the treatment of SV+RV than those in other treatments, with values of 2,105 kg/10a for 'Deabakkul' and 2,537 kg/10a for 'Ildeungkkul'. The simultaneous treatment with side vent and roof vent resulted in 16.2% higher yield (18.1% higher marketable yield) than that in the SV treatment for 'Deabakkul'.

Development of Theoretical Formulae for Calculation of Required Torque in Roll-up Type Ventilation System (권취식 창개폐시스템의 소요토크모델 개발)

  • 박규식;이기명;정석현
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.133-142
    • /
    • 1997
  • Most of the greenhouses employ the roll-up type ventilation control system. Torque required to roll-up and down might be theoretically expressed with the weight times radius of the ventilation roll; however, measured torques were two times of the theoretically estimated values. As the window film of roll-up vent is used over the periods of time, the warping and crumpling of the material caused the increase of the torque in addition to a span deformation. Therefore, this study was performed to develop an empirical torque formulae to present basic torque data and to assist the development of roll-up type ventilation control system. The empirically adjusted rolling radius (r+a) exponentially increased at the maximum span deformation. The coefficient of rolling resistance (Cr) was about 0.7―0.8 depending upon the wrinkle status of film material.

  • PDF

Effect of Different Height of Side Vents on Microclimate in a Single-Span Greenhouse during Natural Ventilation (측창 개폐 높이에 따른 자연환기 단동온실의 미기상환경 비교 분석)

  • Kim, Seong-Heon;Kim, Hyung-Kweon;Lee, Si-Young;Kwon, Jin-Kyung
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.90-97
    • /
    • 2022
  • This study was carried out to investigate the effect of side vent heights on temperature and relative humidity inside and outside the single-span plastic greenhouse (W: 7 m, L: 40 m H: 3.9 m) during natural ventilation. Four different heights (120, 100, 80, 60 cm) of the side vent were used as an experimental condition. Variations of temperature and relative humidity inside and outside the greenhouse and the differences between heights were compared by using one-way ANOVA. In the daytime, the difference in temperature between inside and outside the greenhouse was dropped from 14.0℃ to 7.1℃ as the side vent height increased. The temperature difference in the nighttime was less than 0.2℃ regardless of the height. One-way ANOVA on the temperature difference between heights presented that the statistical significance was founded between all of the combinations of height in the daytime. The difference in relative humidity between inside and outside the greenhouse was grown from -13.8% to -22.2% with a decrease in the side vent height. The humidity difference in the nighttime was less than 1% regardless of the height. One-way ANOVA on the humidity difference revealed that most of the side vent heights showed significance in the daytime but between 100 and 80 cm was not significant. It seemed because the external air became cooler during the experiment with a height of 80 cm. Conclusively, this study empirically demonstrated that the higher side vents resulted in the decrease of differences in temperature and relative humidity between inside and outside the greenhouse, and also the effect of side vent height was statistically significant. This study may be helpful for deciding the height of the side vent effective for controlling temperature and relative humidity in a single-span greenhouse during natural ventilation.

Roof Ventilation Structures and Ridge Vent Effect for Single Span Greenhouses of Arch Shape (아치형 단동온실의 지붕환기구조 및 천창효과)

  • Nam, Sang-Woon
    • Korean Journal of Agricultural Science
    • /
    • v.28 no.2
    • /
    • pp.99-107
    • /
    • 2001
  • It is difficult to install a ventilation window on the roof of single span greenhouses of arch shape. Investigation on the roof ventilation structures for those greenhouses was conducted. In small greenhouses with spans of 5 to 8 m, circular or chimney type ridge vents made of plastic were employed. In large greenhouses with spans of 12 to 18 m, even span roll-up ridge vents made of steel pipe were employed. The effect of roof ventilation was evaluated by comparative experiments between greenhouse installing ridge vents and having controlled side vents only. Roof ventilation contributed greatly to restraint of temperature rise and maintenance of uniform temperature distribution in greenhouses. And ventilation efficiency was analyzed by experiments on the opening and closing operation of the ridge and side vent. There were no temperature differences according to opening and closing sequence of ventilation window. But for greenhouse temperature control by ventilation, it is desirable to open side vents after ridge vents and to close ridge vents after side vents.

  • PDF

Development of a Control Algorithm for Automatic Ventilation (환기창 자동제어용 제어 알고리즘 개발)

  • 박규식;이기명
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 1997
  • Environmental control operations have been considerably contributed to the reduction of labor cost in both plastic film and glass greenhouses since government supported projects were begun. However, some problems are still remaining on the optimal environmental control and excessive operation due to an inflexible software regulating ventilation gear - reducers. The unadjustable software caused the damage of ventilation system, resulting in heat stresses of crops. This study was performed to develop a ventilation software controlling the vent opening level, opening sequence, based on the wind direction, and control interval according to the difference between ambient and set- up temperatures. The software included a beeper system alarming urgent cases, while a manager was remote from the greenhouse. A compatible hardware with the software was also developed by using a low-cost diffused DSP controller.

  • PDF