DOI QR코드

DOI QR Code

Synthesis of Ni-rich NCMA Precursor through Co-precipitation and Improvement of Cycling through Boron and Sn Doping

공침법을 통한 Ni-rich NCMA 합성과 붕소와 주석 도핑을 통한 사이클 특성 향상

  • 전형권 (충남대학교 신소재공학과) ;
  • 홍순현 (충남대학교 신소재공학과) ;
  • 김민정 (충남대학교 신소재공학과) ;
  • 구자훈 (충남대학교 신소재공학과) ;
  • 이희상 (충남대학교 신소재공학과) ;
  • 최규석 (구미전자정보기술원) ;
  • 김천중 (충남대학교 신소재공학과)
  • Received : 2022.03.28
  • Accepted : 2022.04.14
  • Published : 2022.04.27

Abstract

Extensive research is being carried out on Ni-rich Li(NixCoyMn1-x-y)O2 (NCM) due to the growing demand for electric vehicles and reduced cost. In particular, Ni-rich Li(NixCoyMn1-x-y-zAlz)O2 (NCMA) is attracting great attention as a promising candidate for the rapid development of Co-free but electrochemically more stable cathodes. Al, an inactive element in the structure, helps to improve structural stability and is also used as a doping element to improve cycle capability in Ni-rich NCM. In this study, NCMA was successfully synthesized with the desired composition by direct coprecipitation. Boron and tin were also used as dopants to improve the battery performance. Macro- and microstructures in the cathodes were examined by microscopy and X-ray diffraction. While Sn was not successfully doped into NCMA, boron could be doped into NCMA, leading to changes in its physicochemical properties. NCMA doped with boron revealed substantially improved electrochemical properties in terms of capacity retention and rate capability compared to the undoped NCMA.

Keywords

Acknowledgement

This study was financially supported by research fund of Chungnam National University.

References

  1. D. Andre, S. -J. Kim, P. Lamp, S. F. Lux, F. Maglia, O. Paschos and B. Stiaszny, J. Mater. Chem. A, 3, 6709 (2015). https://doi.org/10.1039/C5TA00361J
  2. H.-J. Noh, S. Youn, C. S. Yoon and Y.-K. Sun, J. Power Sources, 233, 121 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.063
  3. R. Jung, M. Metzger, F. Maglia, C. Stinner and H. A. Gasteiger, J. Electrochem. Soc., 164, A1361 (2017). https://doi.org/10.1149/2.0021707jes
  4. T. T. Nguyen, U.-H. Kim, C. S. Yoon and Y.-K.. Sun, Chem. Eng. J., 405, 126887 (2021). https://doi.org/10.1016/j.cej.2020.126887
  5. J. M. Lim, T. Hwang, D. Kim, M. S. Park, K. Cho and M. Cho, Sci. Rep., 7, 39669 (2017). https://doi.org/10.1038/srep39669
  6. N. Y. Park, H. H. Ryu, G. T. Park, T. C. Noh and Y. K. Sun, Adv. Energy Mater., 11, 2003767 (2021). https://doi.org/10.1002/aenm.202003767
  7. U.-H. Kim, J.-H. Kim, J.-Y. Hwang, H.-H. Ryu, C. S. Yoon and Y.-K. Sun, Mater. Today, 23, 26 (2019). https://doi.org/10.1016/j.mattod.2018.12.004
  8. X. Song, G. Liu, H. Yue, L. Luo, S. Yang, Y. Huang and C. Wang, Chem. Eng. J., 407, 126301 (2021). https://doi.org/10.1016/j.cej.2020.126301
  9. S. Wang, J. Zhu, Y. Li, G. Cao, Y. Chen, D. Zhang, Z. Tan, J. Yang, J. Zheng and H. Li, J. Electroanal. Chem., 888, 115200 (2021). https://doi.org/10.1016/j.jelechem.2021.115200
  10. C. M. Julien and A. Mauger, Energies, 13, 6363 (2020). https://doi.org/10.3390/en13236363
  11. W. Li, X. Liu, H. Celio, P. Smith, A. Dolocan, M. Chi and A. Manthiram, Adv. Energy Mater., 8, 201703154 (2018).
  12. Q. Xie, W. Li, A. Dolocan and A. Manthiram, Chem. Mater., 31, 8886 (2019). https://doi.org/10.1021/acs.chemmater.9b02916
  13. F. Zhu, Y. Shi, G. Hu, Z. Peng, Y. Cao, Q. Sun, Z. Xue, Y. Zhang and K. Du, Ceram. Int., 47, 3070 (2021). https://doi.org/10.1016/j.ceramint.2020.09.143
  14. G. Li, Z. Zhang, R. Wang, Z. Huang, Z. Zuo and H. Zhou, Electrochim. Acta, 212, 399 (2016). https://doi.org/10.1016/j.electacta.2016.07.033
  15. L. Song, X. Li, Z. Xiao, L. Li, Z. Cao and H. Zhu, Ionics, 25, 2017 (2018). https://doi.org/10.1007/s11581-018-2636-x
  16. K. Park, D. J. Ham, S. Y. Park, J. Jang, D.-H. Yeon, S. Moon and S. J. Ahn, RSC Adv., 10, 26756 (2020). https://doi.org/10.1039/d0ra01543a
  17. X. Zhang, I. Belharouak, L. Li, Y. Lei, J. W. Elam, A. Nie, X. Chen, R. S. Yassar and R. L. Axelbaum, Adv. Energy Mater, 3, 1299 (2013). https://doi.org/10.1002/aenm.201300269
  18. G.-H. Kang, K.-W. Lee, K. Kwon and J. Song, Metals, 7, 395 (2017). https://doi.org/10.3390/met7100395
  19. K. Araki, N. Taguchi, H. Sakaebe, K. Tatsumi and Z. Ogumi, J. Power Sources, 269, 236 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.101
  20. F. Schipper, M. Dixit, D. Kovacheva, M. Talianker, O. Haik, J. Grinblat, E. M. Erickson, C. Ghanty, D. T. Major, B. Markovsky and D. Aurbach, J. Mater. Chem. A, 4, 16073 (2016). https://doi.org/10.1039/C6TA06740A
  21. C. Roitzheim, L.-Y. Kuo, Y. J. Sohn, M. Finsterbusch, S. Moller, D. Sebold, H. Valencia, M. Meledina, J. Mayer, U. Breuer, P. Kaghazchi, O. Guillon and D. Fattakhova-Rohlfing, ACS Appl. Energy Mater., 5, 524 (2021).
  22. S. H. Lee, B. S. Jin and H. S. Kim, Sci. Rep., 9, 17541 (2019). https://doi.org/10.1038/s41598-019-54115-z
  23. L. Zhang, N. Li, B. Wu, H. Xu, L. Wang, X. Q.. Yang and F. Wu, Nano Lett., 15, 656 (2015). https://doi.org/10.1021/nl5041594
  24. W.-J. Liu, X.-Z. Sun, X. Zhang, C. Li, K. Wang, W. Wen and Y.-W. Ma, Rare Met., 40, 521 (2020).