• 제목/요약/키워드: Ni-rich $Li(Ni_xCo_yMn_{1-x-y-z}Al_z)O_2$

검색결과 2건 처리시간 0.018초

공침법을 통한 Ni-rich NCMA 합성과 붕소와 주석 도핑을 통한 사이클 특성 향상 (Synthesis of Ni-rich NCMA Precursor through Co-precipitation and Improvement of Cycling through Boron and Sn Doping)

  • 전형권;홍순현;김민정;구자훈;이희상;최규석;김천중
    • 한국재료학회지
    • /
    • 제32권4호
    • /
    • pp.210-215
    • /
    • 2022
  • Extensive research is being carried out on Ni-rich Li(NixCoyMn1-x-y)O2 (NCM) due to the growing demand for electric vehicles and reduced cost. In particular, Ni-rich Li(NixCoyMn1-x-y-zAlz)O2 (NCMA) is attracting great attention as a promising candidate for the rapid development of Co-free but electrochemically more stable cathodes. Al, an inactive element in the structure, helps to improve structural stability and is also used as a doping element to improve cycle capability in Ni-rich NCM. In this study, NCMA was successfully synthesized with the desired composition by direct coprecipitation. Boron and tin were also used as dopants to improve the battery performance. Macro- and microstructures in the cathodes were examined by microscopy and X-ray diffraction. While Sn was not successfully doped into NCMA, boron could be doped into NCMA, leading to changes in its physicochemical properties. NCMA doped with boron revealed substantially improved electrochemical properties in terms of capacity retention and rate capability compared to the undoped NCMA.

Enhancement of Electrochemical Activity of Ni-rich LiNi0.8Mn0.1Co0.1O2 by Precisely Controlled Al2O3 Nanocoatings via Atomic Layer Deposition

  • Ramasamy, Hari Vignesh;Sinha, Soumyadeep;Park, Jooyeon;Gong, Minkyung;Aravindan, Vanchiappan;Heo, Jaeyeong;Lee, Yun-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.196-205
    • /
    • 2019
  • Ni-rich layered oxides $Li(Ni_xCo_yMn_z)O_2$ (x + y + z = 1) have been extensively studied in recent times owing to their high capacity and low cost and can possibly replace $LiCoO_2$ in the near future. However, these layered oxides suffer from problems related to the capacity fading, thermal stability, and safety at high voltages. In this study, we use surface coating as a strategy to improve the thermal stability at higher voltages. The uniform and conformal $Al_2O_3$ coating on prefabricated electrodes using atomic layer deposition significantly prevented surface degradation over prolonged cycling. Initial capacity of 190, 199, 188 and $166mAh\;g^{-1}$ is obtained for pristine, 2, 5 and 10 cycles of ALD coated samples at 0.2C and maintains 145, 158, 151 and $130mAh\;g^{-1}$ for high current rate of 2C in room temperature. The two-cycle $Al_2O_3$ modified cathode retained 75% of its capacity after 500 cycles at 5C with 0.05% capacity decay per cycle, compared with 46.5% retention for a pristine electrode, at an elevated temperature. Despite the insulating nature of the $Al_2O_3$ coating, a thin layer is sufficient to improve the capacity retention at a high temperature. The $Al_2O_3$ coating can prevent the detrimental surface reactions at a high temperature. Thus, the morphology of the active material is well-maintained even after extensive cycling, whereas the bare electrode undergoes severe degradation.