DOI QR코드

DOI QR Code

Pan-Caspase Inhibitor zVAD Induces Necroptotic and Autophagic Cell Death in TLR3/4-Stimulated Macrophages

  • Chen, Yuan-Shen (Department of Neurosurgery, National Taiwan University Hospital Yunlin Branch) ;
  • Chuang, Wei-Chu (Department of Pharmacology, College of Medicine, National Taiwan University) ;
  • Kung, Hsiu-Ni (Graduate Institute of Anatomy and Cell Biology, National Taiwan University) ;
  • Cheng, Ching-Yuan (Department of Pharmacology, College of Medicine, National Taiwan University) ;
  • Huang, Duen-Yi (Department of Pharmacology, College of Medicine, National Taiwan University) ;
  • Sekar, Ponarulselvam (Graduate Institute of Medical Sciences, Taipei Medical University) ;
  • Lin, Wan-Wan (Department of Pharmacology, College of Medicine, National Taiwan University)
  • Received : 2021.07.23
  • Accepted : 2021.10.15
  • Published : 2022.04.30

Abstract

In addition to inducing apoptosis, caspase inhibition contributes to necroptosis and/or autophagy depending on the cell type and cellular context. In macrophages, necroptosis can be induced by co-treatment with Toll-like receptor (TLR) ligands (lipopolysaccharide [LPS] for TLR4 and polyinosinic-polycytidylic acid [poly I:C] for TLR3) and a cell-permeable pan-caspase inhibitor zVAD. Here, we elucidated the signaling pathways and molecular mechanisms of cell death. We showed that LPS/zVAD- and poly I:C/zVAD-induced cell death in bone marrow-derived macrophages (BMDMs) was inhibited by receptor-interacting protein kinase 1 (RIP1) inhibitor necrostatin-1 and autophagy inhibitor 3-methyladenine. Electron microscopic images displayed autophagosome/autolysosomes, and immunoblotting data revealed increased LC3II expression. Although zVAD did not affect LPS- or poly I:C-induced activation of IKK, JNK, and p38, it enhanced IRF3 and STAT1 activation as well as type I interferon (IFN) expression. In addition, zVAD inhibited ERK and Akt phosphorylation induced by LPS and poly I:C. Of note, zVAD-induced enhancement of the IRF3/IFN/STAT1 axis was abolished by necrostatin-1, while zVAD-induced inhibition of ERK and Akt was not. Our data further support the involvement of autocrine IFNs action in reactive oxygen species (ROS)-dependent necroptosis, LPS/zVAD-elicited ROS production was inhibited by necrostatin-1, neutralizing antibody of IFN receptor (IFNR) and JAK inhibitor AZD1480. Accordingly, both cell death and ROS production induced by TLR ligands plus zVAD were abrogated in STAT1 knockout macrophages. We conclude that enhanced TRIF-RIP1-dependent autocrine action of IFNβ, rather than inhibition of ERK or Akt, is involved in TLRs/zVAD-induced autophagic and necroptotic cell death via the JAK/STAT1/ROS pathway.

Keywords

Acknowledgement

This work was supported by the Ministry of Science and Technology (108-2320-B-002-028-MY3), National Taiwan University Hospital Yunlin Branch (NTUHYL110.S021), and National Taiwan University (110L890501). We thank the STAT1 knockout mice from Dr. Chien-Kuo Lee (Graduate Institute of Immunology, National Taiwan University College of Medicine).

References

  1. Bonapace, L., Bornhauser, B.C., Schmitz, M., Cario, G., Ziegler, U., Niggli, F.K., Schafer, B.W., Schrappe, M., Stanulla, M., and Bourquin, J.P. (2010). Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J. Clin. Invest. 120, 1310-1323. https://doi.org/10.1172/JCI39987
  2. Chen, C.Y., Hung, Y.F., Tsai, C.Y., Shih, Y.C., Chou, T.F., Lai, M.Z., Wang, T.F., and Hsueh, Y.P. (2021). Transcriptomic analysis and C-terminal epitope tagging reveal differential processing and signaling of endogenous TLR3 and TLR7. Front. Immunol. 12, 686060. https://doi.org/10.3389/fimmu.2021.686060
  3. Chen, S.Y., Chiu, L.Y., Ma, M.C., Wang, J.S., Chien, C.L., and Lin, W.W. (2011). zVAD-induced autophagic cell death requires c-Src-dependent ERK and JNK activation and reactive oxygen species generation. Autophagy 7, 217-228. https://doi.org/10.4161/auto.7.2.14212
  4. Chen, T.Y., Chi, K.H., Wang, J.S., Chien, C.L., and Lin, W.W. (2009). Reactive oxygen species are involved in FasL-induced caspase-independent cell death and inflammatory responses. Free Radic. Biol. Med. 46, 643-655. https://doi.org/10.1016/j.freeradbiomed.2008.11.022
  5. Denton, D. and Kumar, S. (2019). Autophagy-dependent cell death. Cell Death Differ. 26, 605-616. https://doi.org/10.1038/s41418-018-0252-y
  6. Dey, A., Mustafi, S.B., Saha, S., Dwivedi, S.K.D., Mukherjee, P., and Bhattacharya, R. (2016). Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy 12, 659-670. https://doi.org/10.1080/15548627.2016.1147670
  7. Doherty, J. and Baehrecke, E.H. (2018). Life, death and autophagy. Nat. Cell Biol. 20, 1110-1117. https://doi.org/10.1038/s41556-018-0201-5
  8. Galluzzi, L., Kepp, O., Chan, F.K., and Kroemer, G. (2017). Necroptosis: mechanisms and relevance to disease. Annu. Rev. Pathol. 12, 103-130. https://doi.org/10.1146/annurev-pathol-052016-100247
  9. Gao, T., Zhang, S.P., Wang, J.F., Liu, L., Wang, Y., Cao, Z.Y., Hu, Q.K., Yuan, W.J., and Lin, L. (2018). TLR3 contributes to persistent autophagy and heart failure in mice after myocardial infarction. J. Cell. Mol. Med. 22, 395-408. https://doi.org/10.1111/jcmm.13328
  10. Gorentla, B.K., Wan, C.K., and Zhong, X.P. (2011). Negative regulation of mTOR activation by diacylglycerol kinases. Blood 117, 4022-4031. https://doi.org/10.1182/blood-2010-08-300731
  11. Grootjans, S., Vanden Berghe, T., and Vandenabeele, P. (2017). Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ. 24, 1184-1195. https://doi.org/10.1038/cdd.2017.65
  12. Hanson, B. (2016). Necroptosis: a new way of dying? Cancer Biol. Ther. 17, 899-910. https://doi.org/10.1080/15384047.2016.1210732
  13. He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., and Wang, X. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100-1111. https://doi.org/10.1016/j.cell.2009.05.021
  14. Jabir, M.S., Ritchie, N.D., Li, D., Bayes, H.K., Tourlomousis, P., Puleston, D., Lupton, A., Hopkins, L., Simon, A.K., Bryant, C., et al. (2014). Caspase-1 cleavage of the TLR adaptor TRIF inhibits autophagy and beta-interferon production during Pseudomonas aeruginosa infection. Cell Host Microbe 15, 214-227. https://doi.org/10.1016/j.chom.2014.01.010
  15. Kaiser, W.J., Sridharan, H., Huang, C., Mandal, P., Upton, J.W., Gough, P.J., Sehon, C.A., Marquis, R.W., Bertin, J., and Mocarski, E.S. (2013). Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J. Biol. Chem. 288, 31268-31279. https://doi.org/10.1074/jbc.M113.462341
  16. Khan, M.J., Rizwan Alam, M., Waldeck-Weiermair, M., Karsten, F., Groschner, L., Riederer, M., Hallstrom, S., Rockenfeller, P., Konya, V., Heinemann, A., et al. (2012). Inhibition of autophagy rescues palmitic acid-induced necroptosis of endothelial cells. J. Biol. Chem. 287, 21110-21120. https://doi.org/10.1074/jbc.M111.319129
  17. Kim, H.S. and Lee, M.S. (2005). Essential role of STAT1 in caspase-independent cell death of activated macrophages through the p38 mitogen-activated protein kinase/STAT1/reactive oxygen species pathway. Mol. Cell. Biol. 25, 6821-6833. https://doi.org/10.1128/MCB.25.15.6821-6833.2005
  18. Kim, J.Y., Choi, G.E., Yoo, H.J., and Kim, H.S. (2017). Interferon potentiates Toll-like receptor-induced prostaglandin D2 production through positive feedback regulation between signal transducer and activators of yranscription 1 and reactive oxygen species. Front. Immunol. 8, 1720. https://doi.org/10.3389/fimmu.2017.01720
  19. Kim, S.J. and Li, J. (2013). Caspase blockade induces RIP3-mediated programmed necrosis in Toll-like receptor-activated microglia. Cell Death Dis. 4, e716. https://doi.org/10.1038/cddis.2013.238
  20. Kist, M. and Vucic, D. (2021). Cell death pathways: intricate connections and disease implications. EMBO J. 40, e106700.
  21. Lai, M., Yao, H., Shah, S.Z.A., Wu, W., Wang, D., Zhao, Y., Wang, L., Zhou, X., Zhao, D., and Yang, L. (2018). The NLRP3-caspase 1 inflammasome negatively regulates autophagy via TLR4-TRIF in prion peptide-infected microglia. Front. Aging Neurosci. 10, 116. https://doi.org/10.3389/fnagi.2018.00116
  22. Legarda, D., Justus, S.J., Ang, R.L., Rikhi, N., Li, W., Moran, T.M., Zhang, J., Mizoguchi, E., Zelic, M., Kelliher, M.A., et al. (2016). CYLD proteolysis protects macrophages from TNF-mediated auto-necroptosis induced by LPS and licensed by type I IFN. Cell Rep. 15, 2449-2461. https://doi.org/10.1016/j.celrep.2016.05.032
  23. Lin, Y., Choksi, S., Shen, H.M., Yang, Q.F., Hur, G.M., Kim, Y.S., Tran, J.H., Nedospasov, S.A., and Liu, Z.G. (2004). Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J. Biol. Chem. 279, 10822-10828. https://doi.org/10.1074/jbc.M313141200
  24. Lin, Y.C., Huang, D.Y., Chub, C.L., and Lin, W.W. (2010). Anti-inflammatory actions of Syk inhibitors in macrophages involve non-specific inhibition of toll-like receptors-mediated JNK signaling pathway. Mol. Immunol. 47, 1569-1578. https://doi.org/10.1016/j.molimm.2010.01.008
  25. Lin, Y.C., Kuo, H.C., Wang, J.S., and Lin, W.W. (2012). Regulation of inflammatory response by 3-methyladenine involves the coordinative actions on Akt and glycogen synthase kinase 3β rather than autophagy. J. Immunol. 189, 4154-4164. https://doi.org/10.4049/jimmunol.1102739
  26. Liu, W., Wu, H., Chen, L., Wen, Y., Kong, X., and Gao, W.Q. (2015). Park7 interacts with p47(phox) to direct NADPH oxidase-dependent ROS production and protect against sepsis. Cell Res. 25, 691-706. https://doi.org/10.1038/cr.2015.63
  27. Liu, X., Wu, X.P., Zhu, X.L., Li, T., and Liu, Y. (2017). IRG1 increases MHC class I level in macrophages through STAT-TAP1 axis depending on NADPH oxidase mediated reactive oxygen species. Int. Immunopharmacol. 48, 76-83. https://doi.org/10.1016/j.intimp.2017.04.012
  28. Mandal, R., Barron, J.C., Kostova, I., Becker, S., and Strebhardt, K. (2020). Caspase-8: the double-edged sword. Biochim. Biophys. Acta Rev. Cancer 1873, 188357.
  29. Martinet, W., De Meyer, G.R., Timmermans, J.P., Herman, A.G., and Kockx, M.M. (2006). Macrophages but not smooth muscle cells undergo benzyloxycarbonyl-Val-Ala-DL-Asp(O-Methyl)-fluoromethylketone-induced nonapoptotic cell death depending on receptor-interacting protein 1 expression: implications for the stabilization of macrophage-rich atherosclerotic plaques. J. Pharmacol. Exp. Ther. 317, 1356-1364. https://doi.org/10.1124/jpet.106.102970
  30. McComb, S., Cessford, E., Alturki, N.A., Joseph, J., Shutinoski, B., Startek, J.B., Gamero, A.M., Mossman, K.L., and Sad, S. (2014). Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages. Proc. Natl. Acad. Sci. U. S. A. 111, E3206-E3213.
  31. Meylan, E., Burns, K., Hofmann, K., Blancheteau, V., Martinon, F., Kelliher, M., and Tschopp, J. (2004). RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol. 5, 503-507. https://doi.org/10.1038/ni1061
  32. Pan, Z.K., Fisher, C., Li, J.D., Jiang, Y., Huang, S., and Chen, L.Y. (2011). Bacterial LPS up-regulated TLR3 expression is critical for antiviral response in human monocytes: evidence for negative regulation by CYLD. Int. Immunol. 23, 357-364. https://doi.org/10.1093/intimm/dxr019
  33. Pasparakis, M. and Vandenabeele, P. (2015). Necroptosis and its role in inflammation. Nature 517, 311-320. https://doi.org/10.1038/nature14191
  34. Rosenbaum, D.M., Degterev, A., David, J., Rosenbaum, P.S., Roth, S., Grotta, J.C., Cuny, G.D., Yuan, J., and Savitz, S.I. (2010). Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J. Neurosci. Res. 88, 1569-1576. https://doi.org/10.1002/jnr.22314
  35. Samie, M., Lim, J., Verschueren, E., Baughman, J.M., Peng, I., Wong, A., Kwon, Y., Senbabaoglu, Y., Hackney, J.A., Keir, M., et al. (2018). Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling. Nat. Immunol. 19, 246-254. https://doi.org/10.1038/s41590-017-0042-6
  36. Schmalz, G., Krifka, S., and Schweikl, H. (2011). Toll-like receptors, LPS, and dental monomers. Adv. Dent. Res. 23, 302-306. https://doi.org/10.1177/0022034511405391
  37. Seya, T., Shime, H., Takaki, H., Azuma, M., Oshiumi, H., and Matsumoto, M. (2012). TLR3/TICAM-1 signaling in tumor cell RIP3-dependent necroptosis. Oncoimmunology 1, 917-923. https://doi.org/10.4161/onci.21244
  38. Shi, C.S. and Kehrl, J.H. (2008). MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J. Biol. Chem. 283, 33175-33182. https://doi.org/10.1074/jbc.M804478200
  39. Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu. Rev. Immunol. 21, 335-376. https://doi.org/10.1146/annurev.immunol.21.120601.141126
  40. Takemura, R., Takaki, H., Okada, S., Shime, H., Akazawa, T., Oshiumi, H., Matsumoto, M., Teshima, T., and Seya, T. (2015). PolyI:C-induced, TLR3/RIP3-dependent necroptosis backs up immune effector-mediated tumor elimination in vivo. Cancer Immunol. Res. 3, 902-914. https://doi.org/10.1158/2326-6066.CIR-14-0219
  41. Vandenabeele, P., Declercq, W., Van Herreweghe, F., and Vanden Berghe, T. (2010b). The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci. Signal. 3, re4. https://doi.org/10.1126/scisignal.3115re4
  42. Vandenabeele, P., Galluzzi, L., Vanden Berghe, T., and Kroemer, G. (2010a). Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700-714. https://doi.org/10.1038/nrm2970
  43. Wang, J., Whiteman, M.W., Lian, H., Wang, G., Singh, A., Huang, D., and Denmark, T. (2009). A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J. Biol. Chem. 284, 21412-21424. https://doi.org/10.1074/jbc.M109.026013
  44. Witt, A. and Vucic, D. (2017). Diverse ubiquitin linkages regulate RIP kinases-mediated inflammatory and cell death signaling. Cell Death Differ. 24, 1160-1171. https://doi.org/10.1038/cdd.2017.33
  45. Wu, Y.T., Tan, H.L., Huang, Q., Sun, X.J., Zhu, X., and Shen, H.M. (2011). zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFα mediated by the PKC-MAPKs-AP-1 pathway. Cell Death Differ. 18, 26-37. https://doi.org/10.1038/cdd.2010.72
  46. Wu, Y.T., Tan, H.L., Shui, G., Bauvy, C., Huang, Q., Wenk, M.R., Ong, C.N., Codogno, P., and Shen, H.M. (2010). Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J. Biol. Chem. 285, 10850-10861. https://doi.org/10.1074/jbc.M109.080796
  47. Xia, X., Lei, L., Wang, S., Hu, J., and Zhang, G. (2020). Necroptosis and its role in infectious diseases. Apoptosis 25, 169-178. https://doi.org/10.1007/s10495-019-01589-x
  48. Xu, Y., Jagannath, C., Liu, X.D., Sharafkhaneh, A., Kolodziejska, K.E., and Eissa, N.T. (2007). Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27, 135-144. https://doi.org/10.1016/j.immuni.2007.05.022
  49. Xu, Y., Kim, S.O., Li, Y., and Han, J. (2006). Autophagy contributes to caspase-independent macrophage cell death. J. Biol. Chem. 281, 19179-19187. https://doi.org/10.1074/jbc.M513377200
  50. Yuan, J., Amin, P., and Ofengeim, D. (2019). Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 20, 19-33. https://doi.org/10.1038/s41583-018-0093-1
  51. Zhan, Z., Xie, X., Cao, H., Zhou, X., Zhang, X.D., Fan, H., and Liu, Z. (2014). Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy 10, 257-268. https://doi.org/10.4161/auto.27162
  52. Zhang, X., Matsuda, M., Yaegashi, N., Nabe, T., and Kitatani, K. (2020). Regulation of necroptosis by phospholipids and sphingolipids. Cells 9, 627. https://doi.org/10.3390/cells9030627
  53. Zheng, M. and Kanneganti, T.D. (2020). The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol. Rev. 297, 26-38. https://doi.org/10.1111/imr.12909