DOI QR코드

DOI QR Code

Photodynamic Inactivation of Staphylococcus Aureus Based on Dose of Laser Transmission

레이저 투과 선량에 따른 황색포도상구균의 광역학적 비활성화

  • Koo, Bon-Yeoul (Department of Radiology, Vision College of Jeonju) ;
  • Kim, Ji-Won (Department of Radiological Science, Jeonju University)
  • 구본열 (전주비전대학교 방사선학과) ;
  • 김지원 (전주대학교 방사선학과)
  • Received : 2022.02.22
  • Accepted : 2022.03.28
  • Published : 2022.04.30

Abstract

Staphylococcus aureus is a major pathogen that causes clinical infections in humans and can also cause massively colonized in lesion skin, particularly in atopic dermatitis patients. This study investigated the effects of photodynamic inactivation with radachlorin and diode laser irradiation on the viability of S. aureus in vitro and assessed the effects of the dose of laser transmission. In the PDI group, 5 𝜇L of S. aureus suspension and 5 𝜇L of radachlorin were inoculated in a 55 mm petri dish (63.6 cm2). The samples were placed in a 37° incubator for 30 min and then irradiated with light (660 nm diode laser). After laser irradiation, the cells were stored for 24 h at 37° in an incubator with 5% CO2, and the number of colonies was counted. All CFU/mL of S. aureus were reduced by diode laser in the presence of radachlorin, with a killing rate of 87.9% at an energy dose of 9 J/cm2. This study contribute to treat colonized with S. aureus in atopic dermatitis patients and wound infections by providing information on the optimal dose of laser transmission using PDI to eliminate S. aureus.

Keywords

References

  1. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations and management. Clin Microbiol Rev. 2015;28(3):603-61. https://doi.org/10.1128/CMR.00134-14
  2. Ogonowska P, Gilaberte Y, Baranska-Rybak W, Nakonieczna J. Colonization With Staphylococcus aureus in Atopic Dermatitis Patients: Attempts to Reveal the Unknown. Front Microbiol. 2020;11:567090.
  3. Kurlenda J, Grinholc M, Jasek K, Wegrzyn G. RAPD typing of methicillin-resistant Staphylococcus aureus: A 7-year experience in a Polish hospital. Medical Science Monitor. 2007;13(6):MT13-8.
  4. Smeltzer MS, Gillaspy AF. Molecular pathogenesis of staphylcoccal osteomyelitis. Poult Sci. 2000;79(7):1042-9. https://doi.org/10.1093/ps/79.7.1042
  5. Fekrazad R, Zare H, Vand SM. Photodynamic therapy effect on cell growth inhibition induced by Radachlorin and toluidine blue O on Staphylococcus aureus and Escherichia coli: An in vitro study. Photodiagnosis Photodyn Ther. 2016;15:213-7. https://doi.org/10.1016/j.pdpdt.2016.07.001
  6. Topaloglu N, Gulsoy M, Yuksel S. Antimicrobial photodynamic therapy of resistant bacterial strains by indocyanine green and 809-nm diode laser. Photomed Laser Surg. 2013;31(4):155-62. https://doi.org/10.1089/pho.2012.3430
  7. Omar GS, Wilson M, Nair SP. Lethal photosensitization of wound-associated microbes using indocyanine green and near-infrared light. BMC Microbiol. 2008;8:111. https://doi.org/10.1186/1471-2180-8-111
  8. Smith AJ, Daniels T, Bohnen JM. Soft tissue infections and the diabetic foot. The American Journal of Surgery. 1996;172(6):7s-12s. https://doi.org/10.1016/s0002-9610(96)00344-3
  9. Nussbaum EL, Lilge L, Mazzulli T. Effects of 630-, 660-, 810-, and 905-nm laser irradiation delivering radiant exposure of 1-50 J/cm2 on three species of bacteria in vitro. J Clin Laser Med Surg. 2002;20(6):325-33. https://doi.org/10.1089/104454702320901116
  10. Dai T, Huang YY, Hamblin MR. Photodynamic therapy for localized infections--state of the art. Photodiagnosis Photodyn Ther. 2009;6(3-4):170-88. https://doi.org/10.1016/j.pdpdt.2009.10.008
  11. Akilov OE, Kosaka S, O'Riordan K, Song X, Sherwood M, Flotte TJ, et al. The role of photosensitizer molecular charge and structure on the efficacy of photodynamic therapy against Leishmania parasites. Chem Biol. 2006;13(8):839-47. https://doi.org/10.1016/j.chembiol.2006.06.008
  12. Hamblin MR, Hasan T. Photodynamic therapy: A new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004;3(5):436-50. https://doi.org/10.1039/b311900a
  13. Moslemi N, Soleiman-Zadeh Azar P, Bahador A, Rouzmeh N, Chiniforush N, Paknejad M, et al. Inactivation of Aggregatibacter actionmycetemcomitans by two different modalities of photodynamic therapy using Toluidine blue O or Radachlorin as photosensitizers: An in vitro study. Lasers Med Sci. 2015;30(1):89-94. https://doi.org/10.1007/s10103-014-1621-5
  14. Vahabi S, Fekrazad R, Ayremlou S, Taheri S, Zangeneh N. The effect of antimicrobial photodynamic therapy with radachlorin and toluidine blue on streptococcus mutans: An in vitro study. J Dent (Tehran). 2011;8(2):48-54.
  15. Privalov VA, Lappa AV, Seliverstov OV, Faizrakhmanov AB, Yarovoy NN, Kochneva EV, et al. eds. Clinical trials of a new chlorin photosensitizer for photodynamic therapy of malignant tumors. Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XI. SPIE; 2002.
  16. Hsieh CM, Huang YH, Chen CP, Hsieh BC, Tsai T. 5-Aminolevulinic acid induced photodynamic inactivation on Staphylococcus aureus and Pseudomonas aeruginosa. J Food Drug Anal. 2014;22(3):350-5. https://doi.org/10.1016/j.jfda.2013.09.051
  17. Thakuri PS, Joshi R, Basnet S, Pandey S, Taujale SD, Mishra N. Antibacterial photodynamic therapy on Staphylococcus aureus and Pseudomonas aeruginosa in-vitro. Nepal Med Coll J. 2011;13(4):281-4.
  18. Usacheva MN, Teichert MC, Biel MA. Comparison of the methylene blue and toluidine blue photo-bactericidal efficacy against gram-positive and gram-negative microorganisms. Lasers Surg Med. 2001;29(2):165-73. https://doi.org/10.1002/lsm.1105
  19. Fekrazad R, Zare H, Mohammadi Sepahvand S, Morsali P. The effect of antimicrobial photodynamic therapy with radachlorin(R) on Staphylococcus aureus and Escherichia coli: An in vitro study. J Lasers Med Sci. 2014;5(2):82-5.
  20. Guffey JS, Payne W, Greenway J, Buchanan B, Collum J. Inhibition of Acinetobacter baumannii in vitro by low level light therapy at 625-nanometers. Int J Adv Tech Sci. 2014;1:51-9.
  21. Guffey JS, Payne W, Roegge W. In vitro fungicidal effects of methylene blue at 625-nm. Mycoses. 2017;60(11):723-7. https://doi.org/10.1111/myc.12652
  22. Hamblin MR, Demidova TN. eds. Mechanisms of low level light therapy. Mechanisms for low-light therapy. International Society for Optics and Photonics; 2006.
  23. Moslemi N, Rouzmeh N, Shakerinia F, Bahador A. Photodynamic inactivation of Porphyromonas gingivalis utilizing radachlorin and toluidine blue O as photosensitizers: An in vitro study. J Lasers Med Sci. 2018;9(2):107-12. https://doi.org/10.15171/jlms.2018.21
  24. Cornelius JF, Slotty PJ, El Khatib M, Giannakis A, Senger B, Steiger HJ. Enhancing the effect of 5-aminolevulinic acid based photodynamic therapy in human meningioma cells. Photodiagnosis Photodyn Ther. 2014;11(1):1-6. https://doi.org/10.1016/j.pdpdt.2014.01.001
  25. Chen Y, Liu H, Zhang K, Gao L. Massive exudative retinal detachment following photodynamic therapy for retinal hemangioma in von Hippel-Lindau Syndrome. Photodiagnosis Photodyn Ther. 2014;11(2):250-3. https://doi.org/10.1016/j.pdpdt.2014.02.013
  26. Morton CO, Chau M, Stack C. In vitro combination therapy using low dose clotrimazole and photodynamic therapy leads to enhanced killing of the dermatophyte Trichophyton rubrum. BMC Microbiol. 2014;14(1):1-9. https://doi.org/10.1186/1471-2180-14-1
  27. Smijs T, Dame Z, De Haas E, Aans JB, Pavel S, Sterenborg H. Photodynamic and nail penetration enhancing effects of novel multifunctional photosensitizers designed for the treatment of onychomycosis. Photochem Photobiol. 2014;90(1):189-200. https://doi.org/10.1111/php.12196
  28. Lee Y, Baron ED. Photodynamic therapy: Current evidence and applications in dermatology. Semin Cutan Med Surg. 2011;30(4):199-209. https://doi.org/10.1016/j.sder.2011.08.001
  29. Kim JW, Koo BY. Antimocribial Photodynamic therapy using Diode Laser on Candida albicans. Journal of Radiological Science and Technology. 2021;44(2):141-6. https://doi.org/10.17946/JRST.2021.44.2.141