DOI QR코드

DOI QR Code

The Role of Adiponectin in the Skin

  • Oh, Jieun (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Lee, Yeongyeong (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Oh, Sae-Woong (Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Li, TianTian (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Shin, Jiwon (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Park, See-Hyoung (Department of Bio and Chemical Engineering, Hongik University) ;
  • Lee, Jongsung (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University)
  • Received : 2021.05.08
  • Accepted : 2021.08.20
  • Published : 2022.05.01

Abstract

Adiponectin (Ad), a 30 kDa molecule, is an anti-diabetic adipokine; although derived from adipose tissue, it performs numerous activities in various other tissues. It binds to its own receptors, namely adiponectin receptor 1(AdipoR1), adiponectin receptor 2 (AdipoR2), and T-cadherin (CDH13). Ad plays several roles, especially as a regulator. It modulates lipid and glucose metabolism and promotes insulin sensitivity. This demonstrates that Ad has a robust correlation with fat metabolism. Furthermore, although Ad is not in direct contact with other tissues, including the skin, it can be delivered to them by diffusion or secretion via the endocrine system. Recently it has been reported that Ad can impact skin cell biology, underscoring its potential as a therapeutic biomarker of skin diseases. In the present review, we have discussed the association between skin cell biology and Ad. To elaborate further, we described the involvement of Ad in the biology of various types of cells in the skin, such as keratinocytes, fibroblasts, melanocytes, and immune cells. Additionally, we postulated that Ad could be employed as a therapeutic target to maintain skin homeostasis.

Keywords

Acknowledgement

This study was supported by a grant from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and Technology Information and Communication (Grant No. 2020R1F1A1067731).

References

  1. Abel, A. M., Yang, C., Thakar, M. S. and Malarkannan, S. (2018) Natural killer cells: development, maturation, and clinical utilization. Front. Immunol. 9, 1869. https://doi.org/10.3389/fimmu.2018.01869
  2. Achari, A. E. and Jain, S. K. (2017) Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci. 18, 1321. https://doi.org/10.3390/ijms18061321
  3. Akazawa, Y., Sayo, T., Sugiyama, Y., Sato, T., Akimoto, N., Ito, A. and Inoue, S. (2011) Adiponectin resides in mouse skin and upregulates hyaluronan synthesis in dermal fibroblasts. Connect. Tissue Res. 52, 322-328. https://doi.org/10.3109/03008207.2010.528566
  4. Amulic, B., Cazalet, C., Hayes, G. L., Metzler, K. D. and Zychlinsky, A. (2012) Neutrophil function: from mechanisms to disease. Annu. Rev. Immunol. 30, 459-489. https://doi.org/10.1146/annurev-immunol-020711-074942
  5. Bang, S., Won, K. H., Moon, H. R., Yoo, H., Hong, A., Song, Y. and Chang, S. E. (2017) Novel regulation of melanogenesis by adiponectin via the AMPK/CRTC pathway. Pigment Cell Melanoma Res. 30, 553-557. https://doi.org/10.1111/pcmr.12596
  6. Bonnard, C., Durand, A., Vidal, H. and Rieusset, J. (2008) Changes in adiponectin, its receptors and AMPK activity in tissues of diet-induced diabetic mice. Diabetes Metab. 34, 52-61. https://doi.org/10.1016/j.diabet.2007.09.006
  7. Brestoff, J. R., Kim, B. S., Saenz, S. A., Stine, R. R., Monticelli, L. A., Sonnenberg, G. F., Thome, J. J., Farber, D. L., Lutfy, K., Seale, P. and Artis, D. (2015) Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242-246. https://doi.org/10.1038/nature14115
  8. Cappellano, G., Morandi, E. M., Rainer, J., Grubwieser, P., Heinz, K., Wolfram, D., Bernhard, D., Lobenwein, S., Pierer, G. and Ploner, C. (2018) Human macrophages preferentially infiltrate the superficial adipose tissue. Int. J. Mol. Sci. 19, 1404. https://doi.org/10.3390/ijms19051404
  9. Chandran, M., Phillips, S. A., Ciaraldi, T. and Henry, R. R. (2003) Adiponectin: more than just another fat cell hormone? Diabetes Care 26, 2442-2450. https://doi.org/10.2337/diacare.26.8.2442
  10. Chedid, P., Hurtado-Nedelec, M., Marion-Gaber, B., Bournier, O., Hayem, G., Gougerot-Pocidalo, M. A., Frystyk, J., Flyvbjerg, A., El Benna, J. and Marie, J. C. (2012) Adiponectin and its globular fragment differentially modulate the oxidative burst of primary human phagocytes. Am. J. Pathol. 180, 682-692. https://doi.org/10.1016/j.ajpath.2011.10.013
  11. Cheng, X., Folco, E. J., Shimizu, K. and Libby, P. (2012) Adiponectin induces pro-inflammatory programs in human macrophages and CD4+ T cells. J. Biol. Chem. 287, 36896-36904. https://doi.org/10.1074/jbc.M112.409516
  12. Cichorek, M., Wachulska, M., Stasiewicz, A. and Tyminska, A. (2013) Skin melanocytes: biology and development. Postepy Dermatol. Alergol. 30, 30-41.
  13. Clark, R. A., Chong, B., Mirchandani, N., Brinster, N. K., Yamanaka, K., Dowgiert, R. K. and Kupper, T. S. (2006) The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176, 4431-4439. https://doi.org/10.4049/jimmunol.176.7.4431
  14. Deng, Y. and Scherer, P. E. (2010) Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann. N. Y. Acad. Sci. 1212, E1-E19. https://doi.org/10.1111/j.1749-6632.2010.05875.x
  15. Diez, J. J. and Iglesias, P. (2003) The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur. J. Endocrinol. 148, 293-300. https://doi.org/10.1530/eje.0.1480293
  16. Dong, Z., Zhuang, Q., Ye, X., Ning, M., Wu, S., Lu, L. and Wan, X. (2020) Adiponectin inhibits NLRP3 inflammasome activation in nonalcoholic steatohepatitis via AMPK-JNK/ErK1/2-NFκB/ROS signaling pathways. Front. Med. (Lausanne) 7, 546445.
  17. Driskell, R. R. and Watt, F. M. (2015) Understanding fibroblast heterogeneity in the skin. Trends Cell Biol. 25, 92-99. https://doi.org/10.1016/j.tcb.2014.10.001
  18. Fang, X. and Sweeney, G. (2006) Mechanisms regulating energy metabolism by adiponectin in obesity and diabetes. Biochem. Soc. Trans. 34, 798-801. https://doi.org/10.1042/BST0340798
  19. Galvan, M. D., Hulsebus, H., Heitker, T., Zeng, E. and Bohlson, S. S. (2014) Complement protein C1q and adiponectin stimulate Mer tyrosine kinase-dependent engulfment of apoptotic cells through a shared pathway. J. Innate Immun. 6, 780-792. https://doi.org/10.1159/000363295
  20. Gerkowicz, A., Pietrzak, A., Szepietowski, J. C., Radej, S. and Chodorowska, G. (2012) Biochemical markers of psoriasis as a metabolic disease. Folia Histochem. Cytobiol. 50, 155-170. https://doi.org/10.5603/FHC.2012.0025
  21. Glaser, R., Navid, F., Schuller, W., Jantschitsch, C., Harder, J., Schroder, J. M., Schwarz, A. and Schwarz, T. (2009) UV-B radiation induces the expression of antimicrobial peptides in human keratinocytes in vitro and in vivo. J. Allergy Clin. Immunol. 123, 1117-1123. https://doi.org/10.1016/j.jaci.2009.01.043
  22. Hong, S. P., Seo, H. S., Shin, K. O., Park, K., Park, B. C., Kim, M. H., Park, M., Kim, C. D. and Seo, S. J. (2019) Adiponectin enhances human keratinocyte lipid synthesis via SIRT1 and nuclear hormone receptor signaling. J. Invest. Dermatol. 139, 573-582. https://doi.org/10.1016/j.jid.2018.08.032
  23. Hu, E., Liang, P. and Spiegelman, B. M. (1996) AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271, 10697-10703. https://doi.org/10.1074/jbc.271.18.10697
  24. Hug, C., Wang, J., Ahmad, N. S., Bogan, J. S., Tsao, T. S. and Lodish, H. F. (2004) T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc. Natl. Acad. Sci. U.S.A. 101, 10308-10313. https://doi.org/10.1073/pnas.0403382101
  25. Hui, X., Gu, P., Zhang, J., Nie, T., Pan, Y., Wu, D., Feng, T., Zhong, C., Wang, Y., Lam, K. S. and Xu, A. (2015) Adiponectin enhances coldinduced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab. 22, 279-290. https://doi.org/10.1016/j.cmet.2015.06.004
  26. Iwabu, M., Okada-Iwabu, M., Yamauchi, T. and Kadowaki, T. (2015) Adiponectin/adiponectin receptor in disease and aging. NPJ Aging Mech. Dis. 1, 15013. https://doi.org/10.1038/npjamd.2015.13
  27. Iwayama, T., Yanagita, M., Mori, K., Sawada, K., Ozasa, M., Kubota, M., Miki, K., Kojima, Y., Takedachi, M., Kitamura, M., Shimabukuro, Y., Hashikawa, T. and Murakami, S. (2012) Adiponectin regulates functions of gingival fibroblasts and periodontal ligament cells. J. Periodontal. Res. 47, 563-571. https://doi.org/10.1111/j.1600-0765.2012.01467.x
  28. Jasinski-Bergner, S., Buttner, M., Quandt, D., Seliger, B. and Kielstein, H. (2017) Adiponectin and its receptors are differentially expressed in human tissues and cell lines of distinct origin. Obes. Facts 10, 569-583. https://doi.org/10.1159/000481732
  29. Jung, M. Y., Kim, H. S., Hong, H. J., Youn, B. S. and Kim, T. S. (2012) Adiponectin induces dendritic cell activation via PLCγ/JNK/NF-κB pathways, leading to Th1 and Th17 polarization. J. Immunol. 188, 2592-2601. https://doi.org/10.4049/jimmunol.1102588
  30. Kawai, K., Kageyama, A., Tsumano, T., Nishimoto, S., Fukuda, K., Yokoyama, S., Oguma, T., Fujita, K., Yoshimoto, S., Yanai, A. and Kakibuchi, M. (2008) Effects of adiponectin on growth and differentiation of human keratinocytes-implication of impaired wound healing in diabetes. Biochem. Biophys. Res. Commun. 374, 269-273. https://doi.org/10.1016/j.bbrc.2008.07.045
  31. Kim, K. Y., Kim, J. K., Han, S. H., Lim, J. S., Kim, K. I., Cho, D. H., Lee, M. S., Lee, J. H., Yoon, D. Y., Yoon, S. R., Chung, J. W., Choi, I., Kim, E. and Yang, Y. (2006) Adiponectin is a negative regulator of NK cell cytotoxicity. J. Immunol. 176, 5958-5964. https://doi.org/10.4049/jimmunol.176.10.5958
  32. Kim, M., Park, K. Y., Lee, M. K., Jin, T. and Seo, S. J. (2016) Adiponectin suppresses UVB-induced premature senescence and hBD2 overexpression in human keratinocytes. PLoS ONE 11, e0161247. https://doi.org/10.1371/journal.pone.0161247
  33. Kim, M. J., Kim, E. H., Pun, N. T., Chang, J. H., Kim, J. A., Jeong, J. H., Choi, D. Y., Kim, S. H. and Park, P. H. (2017) Globular adiponectin inhibits lipopolysaccharide-primed inflammasomes activation in macrophages via autophagy induction: the critical role of AMPK signaling. Int. J. Mol. Sci. 18, 1275. https://doi.org/10.3390/ijms18061275
  34. Kim, Y., Cho, J. Y., Oh, S. W., Kang, M., Lee, S. E., Jung, E., Park, Y. S. and Lee, J. (2018) Globular adiponectin acts as a melanogenic signal in human epidermal melanocytes. Br. J. Dermatol. 179, 689-701. https://doi.org/10.1111/bjd.16488
  35. Krueger, G. and Ellis, C. N. (2005) Psoriasis--recent advances in understanding its pathogenesis and treatment. J. Am. Acad. Dermatol. 53, S94-S100. https://doi.org/10.1016/j.jaad.2005.04.035
  36. Kwon, K., Park, S. H., Han, B. S., Oh, S. W., Lee, S. E., Yoo, J. A., Park, S. J., Kim, J., Kim, J. W., Cho, J. Y. and Lee, J. (2018) Negative cellular effects of urban particulate matter on human keratinocytes are mediated by p38 MAPK and NF-κB-dependent expression of TRPV 1. Int. J. Mol. Sci. 19, 2660. https://doi.org/10.3390/ijms19092660
  37. Lago, R., Gomez, R., Otero, M., Lago, F., Gallego, R., Dieguez, C., Gomez-Reino, J. J. and Gualillo, O. (2008) A new player in cartilage homeostasis: adiponectin induces nitric oxide synthase type II and pro-inflammatory cytokines in chondrocytes. Osteoarthritis Cartilage 16, 1101-1109. https://doi.org/10.1016/j.joca.2007.12.008
  38. Lee, E. H., Itan, M., Jang, J., Gu, H. J., Rozenberg, P., Mingler, M. K., Wen, T., Yoon, J., Park, S. Y., Roh, J. Y., Choi, C. S., Park, W. J., Munitz, A. and Jung, Y. (2018) Eosinophils support adipocyte maturation and promote glucose tolerance in obesity. Sci. Rep. 8, 9894. https://doi.org/10.1038/s41598-018-28371-4
  39. Li, D., Tsang, J. Y., Peng, J., Ho, D. H., Chan, Y. K., Zhu, J., Lui, V. C., Xu, A., Lamb, J. R., Tam, P. K. and Chen, Y. (2012) Adiponectin mediated MHC class II mismatched cardiac graft rejection in mice is IL-4 dependent. PLoS ONE 7, e48893. https://doi.org/10.1371/journal.pone.0048893
  40. Luo, Y. and Liu, M. (2016) Adiponectin: a versatile player of innate immunity. J. Mol. Cell Biol. 8, 120-128. https://doi.org/10.1093/jmcb/mjw012
  41. Lynch, M. D. and Watt, F. M. (2018) Fibroblast heterogeneity: implications for human disease. J. Clin. Invest. 128, 26-35. https://doi.org/10.1172/jci93555
  42. Maeda, K., Okubo, K., Shimomura, I., Funahashi, T., Matsuzawa, Y. and Matsubara, K. (1996) cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 221, 286-289. https://doi.org/10.1006/bbrc.1996.0587
  43. Mandal, P., Pratt, B. T., Barnes, M., McMullen, M. R. and Nagy, L. E. (2011) Molecular mechanism for adiponectin-dependent M2 macrophage polarization: link between the metabolic and innate immune activity of full-length adiponectin. J. Biol. Chem. 286, 13460-13469. https://doi.org/10.1074/jbc.M110.204644
  44. Mantovani, A., Biswas, S. K., Galdiero, M. R., Sica, A. and Locati, M. (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229, 176-185. https://doi.org/10.1002/path.4133
  45. Mantzoros, C. S., Trakatelli, M., Gogas, H., Dessypris, N., Stratigos, A., Chrousos, G. P. and Petridou, E. T. (2007) Circulating adiponectin levels in relation to melanoma: a case-control study. Eur. J. Cancer 43, 1430-1436. https://doi.org/10.1016/j.ejca.2007.03.026
  46. Marangoni, R. G., Masui, Y., Fang, F., Korman, B., Lord, G., Lee, J., Lakota, K., Wei, J., Scherer, P. E., Otvos, L., Yamauchi, T., Kubota, N., Kadowaki, T., Asano, Y., Sato, S., Tourtellotte, W. G. and Varga, J. (2017) Adiponectin is an endogenous anti-fibrotic mediator and therapeutic target. Sci. Rep. 7, 4397. https://doi.org/10.1038/s41598-017-04162-1
  47. Masaki, H., Izutsu, Y., Yahagi, S. and Okano, Y. (2009) Reactive oxygen species in HaCaT keratinocytes after UVB irradiation are triggered by intracellular Ca(2+) levels. J. Invest. Dermatol. Symp. Proc. 14, 50-52. https://doi.org/10.1038/jidsymp.2009.12
  48. Masamoto, Y., Arai, S., Sato, T., Yoshimi, A., Kubota, N., Takamoto, I., Iwakura, Y., Yoshimura, A., Kadowaki, T. and Kurokawa, M. (2016) Adiponectin enhances antibacterial activity of hematopoietic cells by suppressing bone marrow inflammation. Immunity 44, 1422-1433. https://doi.org/10.1016/j.immuni.2016.05.010
  49. Medoff, B. D., Okamoto, Y., Leyton, P., Weng, M., Sandall, B. P., Raher, M. J., Kihara, S., Bloch, K. D., Libby, P. and Luster, A. D. (2009) Adiponectin deficiency increases allergic airway inflammation and pulmonary vascular remodeling. Am. J. Respir. Cell Mol. Biol. 41, 397-406. https://doi.org/10.1165/rcmb.2008-0415oc
  50. Monks, M., Irakleidis, F. and Tan, P. H. (2019) Complex interaction of adiponectin-mediated pathways on cancer treatment: a novel therapeutic target. J. Cancer Metastasis Treat. 5, 24.
  51. Nestle, F. O. (2008) Psoriasis. Curr. Dir. Autoimmun. 10, 65-75. https://doi.org/10.1159/000131424
  52. Ngatu, N. R., Tanaka, M., Ikeda, M., Inoue, M., Kanbara, S. and Nojima, S. (2017) Sujiaonori-derived algal biomaterials inhibit allergic reaction in allergen-sensitized RBL-2H3 cell line and improve skin health in humans. J. Funct. Biomater. 8, 37. https://doi.org/10.3390/jfb8030037
  53. Nguyen, K. D., Qiu, Y., Cui, X., Goh, Y. P., Mwangi, J., David, T., Mukundan, L., Brombacher, F., Locksley, R. M. and Chawla, A. (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104-108. https://doi.org/10.1038/nature10653
  54. Odegaard, J. I. and Chawla, A. (2011) Alternative macrophage activation and metabolism. Annu. Rev. Pathol. 6, 275-297. https://doi.org/10.1146/annurev-pathol-011110-130138
  55. Ohashi, K., Parker, J. L., Ouchi, N., Higuchi, A., Vita, J. A., Gokce, N., Pedersen, A. A., Kalthoff, C., Tullin, S., Sams, A., Summer, R. and Walsh, K. (2010) Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J. Biol. Chem. 285, 6153-6160. https://doi.org/10.1074/jbc.M109.088708
  56. Pajvani, U. B., Du, X., Combs, T. P., Berg, A. H., Rajala, M. W., Schulthess, T., Engel, J., Brownlee, M. and Scherer, P. E. (2003) Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J. Biol. Chem. 278, 9073-9085. https://doi.org/10.1074/jbc.M207198200
  57. Pajvani, U. B., Hawkins, M., Combs, T. P., Rajala, M. W., Doebber, T., Berger, J. P., Wagner, J. A., Wu, M., Knopps, A., Xiang, A. H., Utzschneider, K. M., Kahn, S. E., Olefsky, J. M., Buchanan, T. A. and Scherer, P. E. (2004) Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem. 279, 12152-12162. https://doi.org/10.1074/jbc.M311113200
  58. Papakonstantinou, E., Roth, M. and Karakiulakis, G. (2012) Hyaluronic acid: a key molecule in skin aging. Dermatoendocrinol. 4, 253-258. https://doi.org/10.4161/derm.21923
  59. Park, P. H., McMullen, M. R., Huang, H., Thakur, V. and Nagy, L. E. (2007) Short-term treatment of RAW264.7 macrophages with adiponectin increases tumor necrosis factor-alpha (TNF-alpha) expression via ERK1/2 activation and Egr-1 expression: role of TNF-alpha in adiponectin-stimulated interleukin-10 production. J. Biol. Chem. 282, 21695-21703. https://doi.org/10.1074/jbc.M701419200
  60. Pittayapruek, P., Meephansan, J., Prapapan, O., Komine, M. and Ohtsuki, M. (2016) Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci. 17, 868. https://doi.org/10.3390/ijms17060868
  61. Rossi, A. and Lord, J. M. (2013) Adiponectin inhibits neutrophil apoptosis via activation of AMP kinase, PKB and ERK 1/2 MAP kinase. Apoptosis 18, 1469-1480. https://doi.org/10.1007/s10495-013-0893-8
  62. Rothenberg, M. E. and Hogan, S. P. (2006) The eosinophil. Annu. Rev. Immunol. 24, 147-174. https://doi.org/10.1146/annurev.immunol.24.021605.090720
  63. Scherer, P. E. (2006) Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55, 1537-1545. https://doi.org/10.2337/db06-0263
  64. Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. and Lodish, H. F. (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746-26749. https://doi.org/10.1074/jbc.270.45.26746
  65. Sereflican, B., Goksugur, N., Bugdayci, G., Polat, M. and Haydar Parlak, A. (2016) Serum visfatin, adiponectin, and tumor necrosis factor alpha (TNF-α) levels in patients with psoriasis and their correlation with disease severity. Acta Dermatovenerol. Croat. 24, 13-19.
  66. Shapiro, L. and Scherer, P. E. (1998) The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr. Biol. 8, 335-338. https://doi.org/10.1016/S0960-9822(98)70133-2
  67. Shibata, S., Tada, Y., Asano, Y., Hau, C. S., Kato, T., Saeki, H., Yamauchi, T., Kubota, N., Kadowaki, T. and Sato, S. (2012) Adiponectin regulates cutaneous wound healing by promoting keratinocyte proliferation and migration via the ERK signaling pathway. J. Immunol. 189, 3231-3241. https://doi.org/10.4049/jimmunol.1101739
  68. Shibata, S., Tada, Y., Hau, C. S., Mitsui, A., Kamata, M., Asano, Y., Sugaya, M., Kadono, T., Masamoto, Y., Kurokawa, M., Yamauchi, T., Kubota, N., Kadowaki, T. and Sato, S. (2015) Adiponectin regulates psoriasiform skin inflammation by suppressing IL-17 production from γδ-T cells. Nat. Commun. 6, 7687. https://doi.org/10.1038/ncomms8687
  69. Sjerobabski-Masnec, I. and Situm, M. (2010) Skin aging. Acta Clin. Croat. 49, 515-518.
  70. Steffens, S. and Mach, F. (2008) Adiponectin and adaptive immunity: linking the bridge from obesity to atherogenesis. Circ. Res. 102, 140-142. https://doi.org/10.1161/CIRCRESAHA.107.170274
  71. Stochmal, A., Czuwara, J., Zaremba, M. and Rudnicka, L. (2020) Altered serum level of metabolic and endothelial factors in patients with systemic sclerosis. Arch. Dermatol. Res. 312, 453-458. https://doi.org/10.1007/s00403-019-01993-y
  72. Sun, Y. and Lodish, H. F. (2010) Adiponectin deficiency promotes tumor growth in mice by reducing macrophage infiltration. PLoS ONE 5, e11987. https://doi.org/10.1371/journal.pone.0011987
  73. Takahashi, H. and Iizuka, H. (2012) Psoriasis and metabolic syndrome. J. Dermatol. 39, 212-218. https://doi.org/10.1111/j.1346-8138.2011.01408.x
  74. Takemura, Y., Ouchi, N., Shibata, R., Aprahamian, T., Kirber, M. T., Summer, R. S., Kihara, S. and Walsh, K. (2007) Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J. Clin. Invest. 117, 375-386. https://doi.org/10.1172/JCI29709
  75. Tobin, D. J. (2018) Early evidence for opposing effects of full versus fragmented adiponectin on melanogenesis in human epidermal melanocytes. Br. J. Dermatol. 179, 561-562. https://doi.org/10.1111/bjd.16909
  76. Tsang, J. Y., Li, D., Ho, D., Peng, J., Xu, A., Lamb, J., Chen, Y. and Tam, P. K. (2011) Novel immunomodulatory effects of adiponectin on dendritic cell functions. Int. Immunopharmacol. 11, 604-609. https://doi.org/10.1016/j.intimp.2010.11.009
  77. Tsatsanis, C., Zacharioudaki, V., Androulidaki, A., Dermitzaki, E., Charalampopoulos, I., Minas, V., Gravanis, A. and Margioris, A. N. (2005) Adiponectin induces TNF-alpha and IL-6 in macrophages and promotes tolerance to itself and other pro-inflammatory stimuli. Biochem. Biophys. Res. Commun. 335, 1254-1263. https://doi.org/10.1016/j.bbrc.2005.07.197
  78. Vitseva, O. I., Tanriverdi, K., Tchkonia, T. T., Kirkland, J. L., McDonnell, M. E., Apovian, C. M., Freedman, J. and Gokce, N. (2008) Inducible Toll-like receptor and NF-κB regulatory pathway expression in human adipose tissue. Obesity 16, 932-937. https://doi.org/10.1038/oby.2008.25
  79. Waki, H., Yamauchi, T., Kamon, J., Kita, S., Ito, Y., Hada, Y., Uchida, S., Tsuchida, A., Takekawa, S. and Kadowaki, T. (2005) Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology 146, 790-796. https://doi.org/10.1210/en.2004-1096
  80. Wang, A. S. and Dreesen, O. (2018) Biomarkers of cellular senescence and skin aging. Front. Genet. 9, 247. https://doi.org/10.3389/fgene.2018.00247
  81. Wang, Z. V. and Scherer, P. E. (2016) Adiponectin, the past two decades. J. Mol. Cell Biol. 8, 93-100. https://doi.org/10.1093/jmcb/mjw011
  82. Wensveen, F. M., Jelencic, V., Valentic, S., Sestan, M., Wensveen, T. T., Theurich, S., Glasner, A., Mendrila, D., Stimac, D., Wunderlich, F. T., Bruning, J. C., Mandelboim, O. and Polic, B. (2015) NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat. Immunol. 16, 376-385. https://doi.org/10.1038/ni.3120
  83. Wilk, S., Jenke, A., Stehr, J., Yang, C. A., Bauer, S., Goldner, K., Kotsch, K., Volk, H. D., Poller, W., Schultheiss, H. P., Skurk, C. and Scheibenbogen, C. (2013) Adiponectin modulates NK-cell function. Eur. J. Immunol. 43, 1024-1033. https://doi.org/10.1002/eji.201242382
  84. Withers, S. B., Forman, R., Meza-Perez, S., Sorobetea, D., Sitnik, K., Hopwood, T., Lawrence, C. B., Agace, W. W., Else, K. J., Heagerty, A. M., Svensson-Frej, M. and Cruickshank, S. M. (2017) Eosinophils are key regulators of perivascular adipose tissue and vascular functionality. Sci. Rep. 7, 44571. https://doi.org/10.1038/srep44571
  85. Wolf, A. M., Wolf, D., Rumpold, H., Enrich, B. and Tilg, H. (2004) Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun. 323, 630-635. https://doi.org/10.1016/j.bbrc.2004.08.145
  86. Woodley, D. T. (2017) Distinct fibroblasts in the papillary and reticular dermis: implications for wound healing. Dermatol. Clin. 35, 95-100. https://doi.org/10.1016/j.det.2016.07.004
  87. Wulster-Radcliffe, M. C., Ajuwon, K. M., Wang, J., Christian, J. A. and Spurlock, M. E. (2004) Adiponectin differentially regulates cytokines in porcine macrophages. Biochem. Biophys. Res. Commun. 316, 924-929. https://doi.org/10.1016/j.bbrc.2004.02.130
  88. Yamaguchi, N., Argueta, J. G., Masuhiro, Y., Kagishita, M., Nonaka, K., Saito, T., Hanazawa, S. and Yamashita, Y. (2005) Adiponectin inhibits Toll-like receptor family-induced signaling. FEBS Lett. 579, 6821-6826. https://doi.org/10.1016/j.febslet.2005.11.019
  89. Yamamoto, R., Ueki, S., Moritoki, Y., Kobayashi, Y., Oyamada, H., Konno, Y., Tamaki, M., Itoga, M., Takeda, M., Ito, W. and Chihara, J. (2013) Adiponectin attenuates human eosinophil adhesion and chemotaxis: implications in allergic inflammation. J. Asthma 50, 828-835. https://doi.org/10.3109/02770903.2013.816725
  90. Yamashita, T., Lakota, K., Taniguchi, T., Yoshizaki, A., Sato, S., Hong, W., Zhou, X., Sodin-Semrl, S., Fang, F., Asano, Y. and Varga, J. (2018) An orally-active adiponectin receptor agonist mitigates cutaneous fibrosis, inflammation and microvascular pathology in a murine model of systemic sclerosis. Sci. Rep. 8, 11843. https://doi.org/10.1038/s41598-018-29901-w
  91. Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., Murakami, K., Ohteki, T., Uchida, S., Takekawa, S., Waki, H., Tsuno, N. H., Shibata, Y., Terauchi, Y., Froguel, P., Tobe, K., Koyasu, S., Taira, K., Kitamura, T., Shimizu, T., Nagai, R. and Kadowaki, T. (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762-769. https://doi.org/10.1038/nature01705
  92. Yang, J., Lin, S. C., Chen, G., He, L., Hu, Z., Chan, L., Trial, J., Entman, M. L. and Wang, Y. (2013) Adiponectin promotes monocyte-to-fibroblast transition in renal fibrosis. J. Am. Soc. Nephrol. 24, 1644-1659. https://doi.org/10.1681/ASN.2013030217
  93. Yoo, J. A., Yu, E., Park, S. H., Oh, S. W., Kwon, K., Park, S. J., Kim, H., Yang, S., Park, J. Y., Cho, J. Y., Kim, Y. J. and Lee, J. (2020) Blue light irradiation induces human keratinocyte cell damage via transient receptor potential vanilloid 1 (TRPV1) regulation. Oxid. Med. Cell. Longev. 2020, 8871745.
  94. Yuki, T., Yoshida, H., Akazawa, Y., Komiya, A., Sugiyama, Y. and Inoue, S. (2011) Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes. J. Immunol. 187, 3230-3237. https://doi.org/10.4049/jimmunol.1100058
  95. Zeng, Q., Macri, L. K., Prasad, A., Clark, R. A. F., Zeugolis, D. I., Hanley, C., Garcia, Y., Pandit, A., Leavesley, D. I., Stupar, D., Fernandez, M. L., Fan, C. and Upton, Z. (2017) 6.20 Skin tissue engineering. In Comprehensive Biomaterials II (P. Ducheyne, Ed.), pp. 334-382. Elsevier, Oxford.