DOI QR코드

DOI QR Code

탄소나노튜브 소재의 정밀 수동소자 적용을 위한 한계 정격전력 용량에 관한 연구

A Study on the Limited Rate Power Capacity for Applications for Precision Passive Devices Based on Carbon Nanotube Materials

  • 이선우 (인하공업전문대학 전기공학과)
  • Lee, Sunwoo (Department of Electrical Engineering, Inha Technical College)
  • 투고 : 2022.01.03
  • 심사 : 2022.02.07
  • 발행 : 2022.05.01

초록

We prepared carbon nanotube (CNT) paper by a vacuum filtration method for the use of a chip-typed resistor as a precision passive device with a constant resistance. Hybrid resistor composed of the CNT resistor with a negative temperature coefficient of resistance (T.C.R) and a metal alloy resistor with a positive T.C.R could lead to a constant resistance, because the resistance increase owing to the temperature increase at the metal alloy and decrease at the CNT could counterbalance each other. The constant resistance for the precision passive devices should be maintained even when a heat was generated by a current flow resulting in resistance change. Performance reliabilities of the CNT resistor for the precision passive device applications such as electrical load limit, environmental load limit, and life limit specified in IEC 60115-1 must be ensured. In this study, therefore, the rated power determination and T.C.R tests of the CNT paper were conducted. -900~-700 ppm/℃ of TCR, 0.1~0.2 A of the carrying current capacity, and 0.0625~0.125 W of the rated power limit were obtained from the CNT paper. Consequently, we confirmed that the application of CNT materials for the precision hybrid passive devices with a metal alloy could result in a better performance reliability with a zero tolerance.

키워드

과제정보

이 논문은 한국전력공사의 2021년 착수 기초연구개발과제 연구비(과제번호: R21XO01-7) 지원과 2021년 인하공업전문대학의 지원에 의해 연구되었음.

참고문헌

  1. T. Damle, M. Varenberg, and L. Graber, Trans. Electr. Electron. Mater., 21, 329 (2020). [DOI: https://doi.org/10.1007/s42341-020-00180-5]
  2. G. J. Sun, J. H. Yun, and M. W. Cheon, Trans. Electr. Electron. Mater., 22, 108 (2021). [DOI: https://doi.org/10.1007/s42341-020-00279-9]
  3. E. M. Kim, M. R. Son, and C. Y. Kang, Trans. Korean. Inst. Elect. Eng., 67, 1055 (2018). [DOI: https://doi.org/10.5370/KIEE.2018.67.8.1055]
  4. F. Zandman, P. R. Simon, and J. Szwarc, Resistor Theory and Technology, 1st ed. (Vishy Inter technology Inc, Malvern, USA, 2001) p. 5.
  5. S. Y. Noh, Trans. Korean. Inst. Elect. Eng., 70, 483 (2021). [DOI: https://doi.org/10.5370/KIEE.2021.70.3.483]
  6. S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 126 (2021). [DOI: https://doi.org/10.4313/JKEM.2021.34.2.126]
  7. A. Fujiwara, R. Iijima, H. Suematsu, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, Phys. B, 323, 227 (2002). [DOI: https://doi.org/10.1016/s0921-4526(02)00970-5]
  8. O. Lourie and H. D. Wagner, Compos. Sci. Technol., 59, 975 (1999). [DOI: https://doi.org/10.1016/S0266-3538(98)00148-1]
  9. J. S. Hwang and H. J. Kim, Korea Standards, 2008, KS C 60115-1, 15. 06.