DOI QR코드

DOI QR Code

CO2 Reduction and C2H4 Production Using Nanostructured Gallium Oxide Photocatalyst

산화갈륨 나노구조 광촉매 특성을 이용한 이산화탄소 저감 및 에틸렌 생성 작용

  • Seo, Dahee (Department of Materials Science and Engineering, Korea Aerospace University) ;
  • Ryou, Heejoong (Department of Materials Science and Engineering, Korea Aerospace University) ;
  • Seo, Jong Hyun (Department of Materials Science and Engineering, Korea Aerospace University) ;
  • Hwang, Wan Sik (Department of Materials Science and Engineering, Korea Aerospace University)
  • 서다희 (한국항공대학교 신소재공학과) ;
  • 류희중 (한국항공대학교 신소재공학과) ;
  • 서종현 (한국항공대학교 신소재공학과) ;
  • 황완식 (한국항공대학교 신소재공학과)
  • Received : 2021.09.24
  • Accepted : 2021.10.19
  • Published : 2022.05.01

Abstract

Ultrawide bandgap gallium oxide (Ga2O3) semiconductors are known to have excellent photocatalytic properties due to their high redox potential. In this study, CO2 reduction is demonstrated using nanostructured Ga2O3 photocatalyst under ultraviolet (254 nm) light source conditions. After the CO2 reduction, C2H4 remained as a by-product in this work. Nanostructured Ga2O3 photocatalyst also showed an excellent endurance characteristic. Photogenerated electron-hole pairs boosted the CO2 reduction to C2H4 via nanostructured Ga2O3 photocatalyst, which is attributed to the ultrawide and almost direct bandgap characteristics of the gallium oxide semiconductor. The findings in this work could expedite the realization of CO2 reduction and a simultaneous C2H4 production using a low cost and high performance photocatalyst.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.NRF-2020M3H4A1A02084895).

References

  1. E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazabal, and J. Perez-Ramirez, Energy Environ. Sci., 6, 3112 (2013). [DOI: https://doi.org/10.1039/C3EE41272E ]
  2. J. Ran, M. Jaroniec, and S. Z. Qiao, Adv. Mater., 30, 1704649 (2018). [DOI: https://doi.org/10.1002/adma.201704649]
  3. J. Hao, D. Yang, J. Wu, B. Ni, L. Wei, Q. Xu, Y. L. Min, and H. Li, Chem. Eng. J., 423, 130190 (2021). [DOI: https://doi.org/10.1016/j.cej.2021.130190 ]
  4. H. M. Jeong, Y. Kwon, J. H. Won, Y. Lum, M. J. Cheng, K. H. Kim, M. Head-Gordon, and J. K. Kang, Adv. Energy Mater., 10, 1903423 (2020). [DOI: https://doi.org/10.1002/aenm.201903423]
  5. F. Tian, H. Zhang, S. Liu, T. Wu, J. Yu, D. Wang, X. Jin, and C. Peng, Appl. Catal., B, 285, 119834 (2021). [DOI: https://doi.org/10.1016/j.apcatb.2020.119834]
  6. H. Tsuneoka, K. Teramura, T. Shishido, and T. Tanaka, J. Phys. Chem. C, 114, 8892 (2010). [DOI: https://doi.org/10.1021/jp910835k]
  7. T. H. Yoo, H. Ryou, I. G. Lee, J. Cho, B. J. Cho, and W. S. Hwang, Catalysts, 10, 545 (2020). [DOI: https://doi.org/10.3390/catal10050545]
  8. M. Akatsuka, Y. Kawaguchi, R. Itoh, A. Ozawa, M. Yamamoto, T. Tanabe, and T. Yoshida, Appl. Catal., B, 262, 118247 (2020). [DOI: https://doi.org/10.1016/j.apcatb.2019.118247]
  9. E. M. Gaigneaux, M. Devillers, S. Hermans, P. Jacobs, J. Martens, and P. Ruiz, Proc. 10th International Symposium, Louvain-la-Neuve (Elsevier, Belgium, 2010) p. 351.
  10. K. Teramura, H. Tsuneoka, T. Shishido, and T. Tanaka, Chem. Phys. Lett., 467, 191 (2008). [DOI: https://doi.org/10.1016/j.cplett.2008.10.079]