DOI QR코드

DOI QR Code

A Study on the Effect of Anthropomorphism, Intelligence, and Autonomy of IPAs on Continuous Usage Intention: From the Perspective of Bi-Dimensional Value

  • Ping Wang (Department of Management Information Systems, Chungbuk National University) ;
  • Sundong Kwon (Department of Management Information Systems, Chungbuk National University) ;
  • Weikeon Zhang (Department of Division of Global Economics & Commerce, Cheongju University)
  • Received : 2021.08.30
  • Accepted : 2022.02.14
  • Published : 2022.03.31

Abstract

Technology companies launched their intelligent personal assistants (IPAs). IPAs not only provide individuals with a convenient way to interact with technology but also offer them the opportunity to interact with AI in a useful and meaningful form. Therefore, the global IPAs have experienced tremendous growth over the past decade. But maintaining continuous usage intention is still a massive challenge for developers and marketers and previous technology adoption models are not enough to explain continuous usage intention of IPAs. Thus, we adopted the bi-dimensional perspectives of utilitarian and hedonic value in this research model, and investigated how three characteristics of IPAs - anthropomorphism, autonomy, and intelligence - affect utilitarian value and hedonic value, which in turn continuous usage intentions. 227 data were collected from IPA users. The results showed that IPAs' continuous usage intention is significantly determined by both utilitarian and hedonic value, with the hedonic value being more prominent. In addition, the results showed that anthropomorphism and intelligence are the most important antecedents of utilitarian and hedonistic value. The results also illustrated that autonomy is a crucial predictor of utilitarian value rather than hedonistic value. Our work contributes to current research by widening the theoretical understanding of the effect of IPA characteristics on continuous usage intention through bi-dimensional values. Our paper also provides IPAs' developer and marketer guidelines for enhancing continuous usage intention.

Keywords

References

  1. Activate. (2018). Activate Tech & Media Outlook 2018. https://www.slideshare.net/ActivateInc/activatetech-media-outlook-2018.
  2. Alepis, E., and Patsakis, C. (2017). Monkey says, monkey does: Security and privacy on voice assistants. IEEE Access, 5, 17841-17851. doi: 10.1109/ACCESS.2017.2747626
  3. Ambroise, L., and Valette-Florence, P. (2010). The brand personality metaphor and inter-product stability of a specific barometer. Recherche et Applications en Marketing (English Edition), 25(2), 3-28. https://doi.org/10.1177/205157071002500201
  4. Arnold, M. J., and Reynolds, K. E. (2003). Hedonic shopping motivations. Journal of Retailing, 79(2), 77-95. https://doi.org/10.1016/S0022-4359(03)00007-1
  5. Ashraf, R. U., Hou, F., and Ahmad, W. (2019). Understanding continuance intention to use social media in China: The roles of personality drivers, hedonic value, and utilitarian value. International Journal of Human-Computer Interaction, 35(13), 1216-1228. https://doi.org/10.1080/10447318.2018.1519145
  6. Babin, B. J., Darden, W. R., and Griffin, M. (1994). Work and/or fun: measuring hedonic and utilitarian shopping value. Journal of Consumer Research, 20(4), 644-656. https://doi.org/10.1086/209376
  7. Bagozzi, R. P. (2007). The legacy of the technology acceptance model and a proposal for a paradigm shift. Journal of the Association for Information Systems, 8(4), 244-254. https://doi.org/10.17705/1jais.00122
  8. Batra, R., and Ahtola, O. T. (1991). Measuring the hedonic and utilitarian sources of consumer attitudes. Marketing Letters, 2(2), 159-170. https://doi.org/10.1007/BF00436035
  9. Bridges, E., and Florsheim, R. (2008). Hedonic and utilitarian shopping goals: The online experience. Journal of Business Research, 61(4), 309-314. https://doi.org/10.1016/j.jbusres.2007.06.017
  10. Burgoon, J. K., Bonito, J. A., Bengtsson, B., Cederberg, C., Lundeberg, M., and Allspach, L. (2000). Interactivity in human-computer interaction: A study of credibility, understanding, and influence. Computers in Human Behavior, 16(6), 553-574. https://doi.org/10.1016/S0747-5632(00)00029-7
  11. Cao, C., Zhao, L., and Hu, Y. (2019), Anthropomorphism of intelligent personal assistants (IPAs): Antecedents and consequences. PACIS 2019 Proceedings, 187. https://aisel.aisnet.org/pacis2019/187.
  12. Cerekovic, A., Aran, O., and Gatica-Perez, D. (2016). Rapport with virtual agents: What do human social cues and personality explain? IEEE Transactions on Affective Computing, 8(3), 382-395. https://doi.org/10.1109/TAFFC.2016.2545650
  13. Chandler, J., and Schwarz, N. (2010). Use does not wear ragged the fabric of friendship: Thinking of objects as alive makes people less willing to replace them. Journal of Consumer Psychology, 20(2), 138-145. https://doi.org/10.1016/j.jcps.2009.12.008
  14. Chandon, P., Wansink, B., and Laurent, G. (2000). A benefit congruency framework of sales promotion effectiveness. Journal of Marketing, 64(4), 65-81. https://doi.org/10.1509/jmkg.64.4.65.18071
  15. Kim, C. W. (2017). Factors on intention to use intelligent personal assistant (IPA) -Focused on functional characteristics of IPA. School of Business Administration Graduate School, Kyungpook National University Daegu, Korea.
  16. Chattaraman, V., Kwon, W. S., Gilbert, J. E., and Ross, K. (2019). Should AI-Based, conversational digital assistants employ social-or task-oriented interaction style? A task-competency and reciprocity perspective for older adults. Computers in Human Behavior, 90, 315-330. doi: 10.1016/j.chb.2018.08.04
  17. Childers, T. L., Carr, C. L., Peck, J., and Carson, S. (2001). Hedonic and utilitarian motivations for online retail shopping behavior. Journal of Retailing, 77(4), 511-535. https://doi.org/10.1016/S0022-4359(01)00056-2
  18. Chin, W. W., and Gopal, A. (1995). Adoption intention in GSS: Relative importance of beliefs. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 26(2-3), 42-64. https://doi.org/10.1145/217278.217285
  19. Chin, W. W., Marcolin, B. L., and Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14(2), 189-217. https://doi.org/10.1287/isre.14.2.189.16018
  20. Chiu, C. M., Wang, E. T., Fang, Y. H., and Huang, H. Y. (2014). Understanding customers' repeat purchase intentions in B2C e-commerce: The roles of utilitarian value, hedonic value and perceived risk. Information Systems Journal, 24(1), 85-114. https://doi.org/10.1111/j.1365-2575.2012.00407.x
  21. Choi, J., and Kim, H. (2016). A study on the usage status of smartphone voice interface and user perception. Journal of the Korean Electronic Transactions Association, 21(4), 29-40.
  22. Connie Hwong, V. analytics I. (2017). Report: Rise of the machines: How personal assistant apps are shaping digital consumer habits. http://www.vertoanalytics.com/report-rise-machines/.
  23. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
  24. Deng, L., Turner, D. E., Gehling, R., and Prince, B. (2010). User experience, satisfaction, and continual usage intention of IT. European Journal of Information Systems, 19(1), 60-75. https://doi.org/10.1057/ejis.2009.50
  25. Duan, Y., Edwards, J. S., and Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of big data: Evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021
  26. Epley, N., Waytz, A., Akalis, S., and Cacioppo, J. T. (2008). When we need a human: Motivational determinants of anthropomorphism. Social Cognition, 26(2), 143-155. https://doi.org/10.1521/soco.2008.26.2.143
  27. Epley, N., Waytz, A., and Cacioppo, J. T. (2007). On seeing human: A three-factor theory of anthropomorphism. Psychological Review, 114(4), 864.
  28. Eroglu, S. A., Machleit, K., and Barr, T. F. (2005). Perceived retail crowding and shopping satisfaction: the role of shopping values. Journal of Business Research, 58(8), 1146-1153. https://doi.org/10.1016/j.jbusres.2004.01.005
  29. Falk, R. F., and Miller, N. B. (1992). A primer for soft modeling. University of Akron Press.
  30. Fornell, C., and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  31. Garnier, M., and Poncin, I. (2013). The avatar in marketing: Synthesis, integrative framework and perspectives. Recherche et Applications en Marketing (English Edition), 28(1), 85-115. https://doi.org/10.1177/2051570713478335
  32. Gray, H. M., Gray, K., and Wegner, D. M. (2007). Dimensions of mind perception. Science, 315(5812), 619-619. https://doi.org/10.1126/science.1134475
  33. Guzman, A. L. (2019). Voices in and of the machine: Source orientation toward mobile virtual assistants. Computers in Human Behavior, 90, 343-350. https://doi.org/10.1016/j.chb.2018.08.009
  34. Han, M. C. (2021). The impact of anthropomorphism on consumers' purchase decision in chatbot commerce. Journal of Internet Commerce, 20(1), 46-65. https://doi.org/10.1080/15332861.2020.1863022
  35. Han, S., and Yang, H. (2018). Understanding adoption of intelligent personal assistants: A parasocial relationship perspective. Industrial Management & Data Systems, 118(3), 618-636. https://doi.org/10.1108/IMDS-05-2017-0214
  36. Hartman, J. B., and Samra, Y. M. (2008). Impact of personal values and innovativeness on hedonic and utilitarian aspects of web use: An empirical study among United States teenagers. International Journal of Management, 25(1), 77-94.
  37. Hassanein, K., and Head, M. (2007). Manipulating perceived social presence through the web interface and its impact on attitude towards online shopping. International Journal of Human-Computer Studies, 65(8), 689-708. https://doi.org/10.1016/j.ijhcs.2006.11.018
  38. Heerink, M., Krose, B., Evers, V., and Wielinga, B. (2008). The influence of social presence on acceptance of a companion robot by older people. Journal of Physical Agents, 2(2), 33-40. https://doi.org/10.14198/JoPha.2008.2.2.05
  39. Hirschman, E. C., and Holbrook, M. B. (1982). Hedonic consumption: Emerging concepts, methods and propositions. Journal of Marketing, 46(3), 92-101. https://doi.org/10.1177/002224298204600314
  40. Hoffman, D. L., and Novak, T. P. (2018). Consumer and object experience in the internet of things: An assemblage theory approach. Journal of Consumer Research, 44(6), 1178-1204. https://doi.org/10.1093/jcr/ucx105
  41. Hofmann, K., Li, L., and Radlinski, F. (2016). Online evaluation for information retrieval. Foundations and Trends in Information Retrieval, 10(1), 1-117. https://doi.org/10.1561/1500000051
  42. Holbrook, M. B., and Batra, R. (1987). Assessing the role of emotions as mediators of consumer responses to advertising. Journal of Consumer Research, 14(3), 404-420. https://doi.org/10.1086/209123
  43. Homer, P. M. (2008). Perceived quality and image: When all is not "rosy". Journal of Business Research, 61(7), 715-723. https://doi.org/10.1016/j.jbusres.2007.05.009
  44. Hoy, M. B. (2018). Alexa, Siri, Cortana, and more: an introduction to voice assistants. Medical Reference Services Quarterly, 37(1), 81-88. https://doi.org/10.1080/02763869.2018.1404391
  45. Hu, Q., Lu, Y., Pan, Z., Gong, Y., and Yang, Z. (2021). Can AI artifacts influence human cognition? The effects of artificial autonomy in intelligent personal assistants. International Journal of Information Management, 56. doi: 10.1016/j.ijinfomgt.2020.102250.
  46. Hu, Q., Pan, Z., and Liu, J. (2019). The duality of autonomy on continuous usage of intelligent personal assistants (IPAs): From agency perspective. ACIS 2019 Proceedings. 96. https://aisel.aisnet.org/pacis2019/96.
  47. Huang, M. H., and Rust, R. T. (2021). Engaged to a robot? The role of AI in service. Journal of Service Research, 24(1), 30-41. https://doi.org/10.1177/1094670520902266
  48. Jarvenpaa, S. L., and Todd, P. A. (1996). Consumer reactions to electronic shopping on the World Wide Web. International Journal of Electronic Commerce, 1(2), 59-88. https://doi.org/10.1080/10864415.1996.11518283
  49. Jones, M. A., Reynolds, K. E., and Arnold, M. J. (2006). Hedonic and utilitarian shopping value: Investigating differential effects on retail outcomes. Journal of Business Research, 59(9), 974-981. https://doi.org/10.1016/j.jbusres.2006.03.006
  50. Joo, J. (2016). Exploring Korean collegians' smartphone game behavior: Focusing on conciseness, perceived ease of use, perceived enjoyment, flow, and intent to use. Journal of Digital Convergence, 14(1), 379-386. https://doi.org/10.14400/JDC.2016.14.1.379
  51. Kamis, A., Koufaris, M., and Stern, T. (2008). Using an attribute-based decision support system for user-customized products online: An experimental investigation. MIS Quarterly, 32(1), 159-177. https://doi.org/10.2307/25148832
  52. Ki, C. W. C., Cho, E., & Lee, J. E. (2020). Can an intelligent personal assistant (IPA) be your friend? Para-friendship development mechanism between IPAs and their users. Computers in Human Behavior, 111. doi: 10.1016/j.chb.2020.106412.
  53. Kim, B., and Han, I. (2011). The role of utilitarian and hedonic values and their antecedents in a mobile data service environment. Expert Systems with Applications, 38(3), 2311-2318. https://doi.org/10.1016/j.eswa.2010.08.019
  54. Kim, H. W., Chan, H. C., and Gupta, S. (2007). Value-based adoption of mobile internet: an empirical investigation. Decision Support Systems, 43(1), 111-126. https://doi.org/10.1016/j.dss.2005.05.009
  55. Kim, S. H., Bae, J. H., and Jeon, H. M. (2019). Continuous intention on accommodation apps: Integrated value-based adoption and expectation-confirmation model analysis. Sustainability, 11(6), 1578.
  56. Kim, S., and McGill, A. L. (2011). Gaming with Mr. Slot or gaming the slot machine? Power, anthropomorphism, and risk perception. Journal of Consumer Research, 38(1), 94-107. https://doi.org/10.1086/658148
  57. Kim, Y., Park, Y., and Choi, J. (2017). A study on the adoption of IoT smart home service: Using value-based adoption model. Total Quality Management & Business Excellence, 28(9-10), 1149-1165. https://doi.org/10.1080/14783363.2017.1310708
  58. King, W. J., and Ohya, J. (1996). The representation of agents: Anthropomorphism, agency, and intelligence. In Conference Companion on Human Factors in Computing Systems, 289-290. doi: 10.1145/ 257089.257326.
  59. Klimmt, C., Hartmann, T., and Frey, A. (2007). Effectance and control as determinants of video game enjoyment. Cyberpsychology and Behavior, 10(6), 845-848 https://doi.org/10.1089/cpb.2007.9942
  60. Kline, R. B. (2011). Principles and practice of structural equation modeling., 3rd ed. New York: Guilford.
  61. Knote, R., Janson, A., Eigenbrod, L., and Sollner, M. (2018), The what and how of smart personal assistants: Principles and application domains for IS research. Multikonferenz Wirtschaftsinformatik (MKWI). - Luneburg, Germany. https://www.alexandria.unisg.ch/publications/252796.
  62. Lageat, T., Czellar, S., and Laurent, G. (2003). Engineering hedonic attributes to generate perceptions of luxury: Consumer perception of an everyday sound. Marketing Letters, 14(2), 97-109. https://doi.org/10.1023/A:1025462901401
  63. Lee, D. J. (2015). An empirical study on the provision of personal information in the use of smart products. e-Business Research, 16(3), 123-144.
  64. Lee, K. M., and Nass, C. (2004). The multiple source effect and synthesized speech: Doubly-disembodied language as a conceptual framework. Human Communication Research, 30(2), 182-207. https://doi.org/10.1111/j.1468-2958.2004.tb00730.x
  65. Lee, S., Lee, N., and Sah, Y. J. (2020). Perceiving a mind in a Chatbot: Effect of mind perception and social cues on co-presence, closeness, and intention to use. International Journal of Human-Computer Interaction, 36(10), 930-940. https://doi.org/10.1080/10447318.2019.1699748
  66. Legg, S., and Hutter, M. (2007). A collection of definitions of intelligence. Frontiers in Artificial Intelligence and Applications, 157, 17-25.
  67. Legris, P., Ingham, J., and Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191-204. https://doi.org/10.1016/S0378-7206(01)00143-4
  68. Lester, J. C., Converse, S. A., Kahler, S. E., Barlow, S. T., Stone, B. A., and Bhogal, R. S. (1997). The persona effect: Affective impact of animated pedagogical agents. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, 359-366. doi: 10.1145/258549.258797.
  69. Lim, W. M. (2018). Dialectic antidotes to critics of the technology acceptance model: Conceptual, methodological, and replication treatments for behavioural modelling in technology-mediated environments. Australasian Journal of Information Systems, 22(1651), doi: 10.3127/ajis.v22i0.1651.
  70. Lin, T. C., Wu, S., Hsu, J. S. C., and Chou, Y. C. (2012). The integration of value-based adoption and expectation-confirmation models: An example of IPTV continuance intention. Decision Support Systems, 54(1), 63-75. https://doi.org/10.1016/j.dss.2012.04.004
  71. Louie, W. Y. G., McColl, D., and Nejat, G. (2014). Acceptance and attitudes toward a human-like socially assistive robot by older adults. Assistive Technology, 26(3), 140-150. https://doi.org/10.1080/10400435.2013.869703
  72. Luczak, H., Roetting, M., and Schmidt, L. (2003). Let's talk: anthropomorphization as means to cope with stress of interacting with technical devices. Ergonomics, 46(13-14), 1361-1374. https://doi.org/10.1080/00140130310001610883
  73. Maes, P. (1995). Agents that reduce work and information overload. In Readings in human-computer interaction, 811-821. Morgan Kaufmann. doi: 10.1016/B978-0-08-051574-8.50084-4.
  74. March, S., Hevner, A., and Ram, S. (2000). Research commentary: An agenda for information technology research in heterogeneous and distributed environments. Information Systems Research, 11(4), 327-341. https://doi.org/10.1287/isre.11.4.327.11873
  75. Martin, J., Mortimer, G., and Andrews, L. (2015). Re-examining online customer experience to include purchase frequency and perceived risk. Journal of Retailing and Consumer Services, 25, 81-95. https://doi.org/10.1016/j.jretconser.2015.03.008
  76. McLean, G., and Osei-Frimpong, K. (2019). Hey Alexa ... examine the variables influencing the use of artificial intelligent in-home voice assistants. Computers in Human Behavior, 99, 28-37. https://doi.org/10.1016/j.chb.2019.05.009
  77. Mitchell, T. M., Caruana, R., Freitag, D., McDermott, J., and Zabowski, D. (1994). Experience with a learning personal assistant. Communications of the ACM, 37(7), 80-91. https://doi.org/10.1145/176789.176798
  78. Moussawi, S. (2016). Investigating personal intelligent agents in everyday life through a behavioral lens, University of New York.
  79. Moussawi, S., and Koufaris, M. (2019, January). Perceived intelligence and perceived anthropomorphism of personal intelligent agents: Scale development and validation. In Proceedings of the 52nd Hawaii International Conference on System Sciences. http://hdl.handle.net/10125/59452.
  80. Myers, K., Berry, P., Blythe, J., Conley, K., Gervasio, M., McGuinness, D. L., and Tambe, M. (2007). An intelligent personal assistant for task and time management. AI Magazine, 28(2), 47-47.
  81. Nan, X., Anghelcev, G., Myers, J. R., Sar, S., and Faber, R. (2006). What if a web site can talk? Exploring the persuasive effects of web-based anthropomorphic agents. Journalism & Mass Communication Quarterly, 83(3), 615-631. https://doi.org/10.1177/107769900608300309
  82. Nass, C. I., and Brave, S. (2005). Wired for speech: How voice activates and advances the human-computer relationship. Cambridge, MA: MIT Press.
  83. Nass, C., and Moon, Y. (2000). Machines and mindlessness: Social responses to computers. Journal of Social Issues, 56(1), 81-103. https://doi.org/10.1111/0022-4537.00153
  84. Novak, T. P., and Hoffman, D. L. (2019). Relationship journeys in the internet of things: a new framework for understanding interactions between consumers and smart objects. Journal of the Academy of Marketing Science, 47(2), 216-237. https://doi.org/10.1007/s11747-018-0608-3
  85. Nunnally, J. C. (1978). An overview of psychological measurement. Clinical Diagnosis of Mental Disorders, 97-146. doi: 10.1007/978-1-4684-2490-4_4.
  86. Overby, J. W., and Lee, E. J. (2006). The effects of utilitarian and hedonic online shopping value on consumer preference and intentions. Journal of Business Research, 59(10-11), 1160-1166. https://doi.org/10.1016/j.jbusres.2006.03.008
  87. Parasuraman, R., Sheridan, T. B., and Wickens, C. D. (2000). A model for types and levels of human interaction with automation. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 30(3), 286-297. https://doi.org/10.1109/3468.844354
  88. Park, C. W., and Moon, B. J. (2003). The relationship between product involvement and product knowledge: Moderating roles of product type and product knowledge type. Psychology & Marketing, 20(11), 977-997. https://doi.org/10.1002/mar.10105
  89. Phaosathianphan, N., and Leelasantitham, A. (2019). Understanding the adoption factors influence on the use of intelligent travel assistant (ITA) for eco-tourists: an extension of the UTAUT. International Journal of Innovation and Technology Management, 16(8), 1950060. doi: 10.1142/S0219877019500603
  90. Pitardi, V., and Marriott, H. R. (2021). Alexa, she's not human but ... Unveiling the drivers of consumers' trust in voice-based artificial intelligence. Psychology & Marketing, 38(4), 626-642. https://doi.org/10.1002/mar.21457
  91. Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., and Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903. https://doi.org/10.1037/0021-9010.88.5.879
  92. Ponciano, R., Pais, S., and Casal, J. (2015). Using accuracy analysis to find the best classifier for intelligent personal assistants. Procedia Computer Science, 52, 310-317 doi: 10.1016/j.procs.2015.05.090.
  93. Rietz, T., Benke, I., and Maedche, A. (2019). The impact of anthropomorphic and functional chatbot design features in enterprise collaboration systems on user acceptance. 14th International Conference on Wirtschaftsinformatik, 24-27, Siegen, Germany.
  94. Ringle, C. M., Wende, S., and Becker, J. M. (2015). SmartPLS 3. SmartPLS GmbH, Boenningstedt. Journal of Service Science and Management, 10(3), Applied Mathematics Journal of Hindawi. www. hindawi.com, 2018.
  95. Russell, S., and Norvig, P. (2003). Artificial intelligence-A modern approach 2ed. Englewood Cliffs: Prentice Hall.
  96. Ryu, K., Han, H., and Jang, S. S. (2010). Relationships among hedonic and utilitarian values, satisfaction and behavioral intentions in the fast-casual restaurant industry. International Journal of Contemporary Hospitality Management, 22(3), 416-432. https://doi.org/10.1108/09596111011035981
  97. Sakarya, S., and Soyer, N. (2014). Cultural differences in online shopping behavior: Turkey and the United Kingdom. International Journal of Electronic Commerce Studies, 4(2), 213-238.
  98. San-Martin, S., Lopez-Catalan, B., and Ramon-Jeronimo, M. A. (2013). Mobile shoppers: Types, drivers, and impediments. Journal of Organizational Computing and Electronic Commerce, 23(4), 350-371. https://doi.org/10.1080/10919392.2013.837793
  99. Santos, J., Rodrigues, J. J., Silva, B. M., Casal, J., Saleem, K., and Denisov, V. (2016). An IoT-based mobile gateway for intelligent personal assistants on mobile health environments. Journal of Network and Computer Applications, 71, 194-204 . https://doi.org/10.1016/j.jnca.2016.03.014
  100. Sarstedt, M., and Cheah, J. H. (2019). Partial least squares structural equation modeling using SmartPLS: A software review. Journal of Marketing Analytics, 7, 196-202. https://doi.org/10.1057/s41270-019-00058-3
  101. Schmitz, M., Baus, J., and Schmidt, S. (2006). Towards anthropomorphized objects: A novel interaction metaphor for instrumented spaces. In 3rd International Workshop on the Tangible Space Initiative.
  102. Schweitzer, F., Belk, R., Jordan, W., and Ortner, M. (2019). Servant, friend or master? The relationships users build with voice-controlled smart devices. Journal of Marketing Management, 35(7-8), 693-715. https://doi.org/10.1080/0267257X.2019.1596970
  103. Hwang, S. H. and Yoon, J. Y. (2017). User experience analysis of virtual assistant applying grounded theory: Focusing on SKT virtual assistant 'NUGU'. Korean HCI Society Conference, 1126-1129.
  104. Sharma, T. G., Tak, P., and Kesharwani, A. (2020). Understanding continuance intention to play online games: The roles of hedonic value, utilitarian value and perceived risk. Journal of Internet Commerce, 19(3), 346-372. https://doi.org/10.1080/15332861.2020.1756189
  105. Shoham, Y. (1993). Agent-oriented programming. Artificial Intelligence, 60(1), 51-92. https://doi.org/10.1016/0004-3702(93)90034-9
  106. Siegel, M. (2003). The sense-think-act paradigm revisited. In 1st International Workshop on Robotic Sensing, ROS'03. IEEE.
  107. Sproull, L., Subramani, M., Kiesler, S., Walker, J. H., and Waters, K. (1996). When the interface is a face. Human-Computer Interaction, 11(2), 97-124. https://doi.org/10.1207/s15327051hci1102_1
  108. Steels, L., and Brooks, R. A. (1995). The artificial life route to artificial intelligence: Building embodied, situated agents. L. Erlbaum Associates Hillsdale.
  109. Teo, T. S. (2001). Demographic and motivation variables associated with Internet usage activities. Internet Research, 11(2), 125-137. https://doi.org/10.1108/10662240110695089
  110. Transparency Market Research. (2016). Growing focus on strengthening customer relations spurs adoption of intelligent virtual assistant technology, says TMR. Retrieved from https://www.prnewswire.com/news-releases/growing-focus-on-strengthening-customer-relations-spurs-adoption-of-intelligent-virtual-assistant-technology-says-tmr-589042721.html. Accessed March 2021.
  111. Ukpabi, D., Karjaluoto, H., Olaleye, S., and Mogaji, E. (2019). Influence of offline activities and customer value creation on online travel community continuance usage intention. In Information and Communication Technologies in Tourism, 450-460.
  112. Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS Quarterly, 28(4), 695-704. https://doi.org/10.2307/25148660
  113. Venkatesh, V., and Brown, S. A. (2001). A longitudinal investigation of personal computers in homes: Adoption determinants and emerging challenges. MIS Quarterly, 25(1), 71-102. https://doi.org/10.2307/3250959
  114. Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
  115. Venkatesh, V., Thong, J. Y., and Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
  116. Viot, C., and Bressolles, G. (2012). LES AGENTS VIRTUELS INTELLIGENTS Quels atouts pour la relation client? Decisions Marketing, Association Francaise du Marketing, 45-56. https://hal.archives-ouvertes.fr/hal-01803745.
  117. Voicebot, PullString, and RAIN. (2018). The voice assistant consumer adoption report 2018. Retrieved from: https://voicebot.ai/wp-content/uploads/2018/11/voice-assistant-consumer-adoption-report-2018-voicebot.pdf. Accessed 15 Dec 2021.
  118. Vorderer, P., Hartmann, T., and Klimmt, C. (2003). Explaining the enjoyment of playing video games: the role of competition. In Proceedings of the Second International Conference on Entertainment Computing, 1-9.
  119. Wagner, K., Nimmermann, F., and Schramm-Klein, H. (2019). Is it human? The role of anthropomorphism as a driver for the successful acceptance of digital voice assistants. In Proceedings of the 52nd Hawaii International Conference on System Sciences. http://hdl.handle.net/10125/59579.
  120. Wakefield, K. L., and Baker, J. (1998). Excitement at the mall: determinants and effects on shopping response. Journal of Retailing, 74(4), 515-539. https://doi.org/10.1016/S0022-4359(99)80106-7
  121. Wang, L. C., Baker, J., Wagner, J. A., and Wakefield, K. (2007). Can a retail web site be social? Journal of Marketing, 71(3), 143-157. https://doi.org/10.1509/jmkg.71.3.143
  122. Waytz, A., Heafner, J., and Epley, N. (2014). The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle. Journal of Experimental Social Psychology, 52, 113-117. https://doi.org/10.1016/j.jesp.2014.01.005
  123. Weber, P., and Ludwig, T. (2020). (Non-) Interacting with conversational agents: perceptions and motivations of using chatbots and voice assistants. In Proceedings of the Conference on Mensch und Computer, 321-331. doi: 10.1145/3404983.3405513.
  124. Wetzels, M., Odekerken-Schroder, G., and Van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS Quarterly, 33(1), 177-195. https://doi.org/10.2307/20650284
  125. Wise, J., VanBoskirk, S., and Liu, S. (2016). The rise of intelligent agents. Forrester.com.
  126. Wooldridge, M., and Jennings, N. R. (1995). Intelligent agents: Theory and practice. The Knowledge Engineering Review, 10(2), 115-152. https://doi.org/10.1017/S0269888900008122
  127. Yang, H., and Lee, H. (2019). Understanding user behavior of virtual personal assistant devices. Information Systems and e-Business Management, 17(1), 65-87. https://doi.org/10.1007/s10257-018-0375-1
  128. Yang, H., Lee, H., and Zo, H. (2017). User acceptance of smart home services: an extension of the theory of planned behavior. Industrial Management & Data Systems, 117(1), 68-89. https://doi.org/10.1108/IMDS-01-2016-0017
  129. Zhang, C. B., Li, Y. N., Wu, B., and Li, D. J. (2017). How WeChat can retain users: Roles of network externalities, social interaction ties, and perceived values in building continuance intention. Computers in Human Behavior, 69, 284-293. https://doi.org/10.1016/j.chb.2016.11.069
  130. Zhang, S., Zhao, L., Lu, Y., and Yang, J. (2016). Do you get tired of socializing? An empirical explanation of discontinuous usage behaviour in social network services. Information & Management, 53(7), 904-914. https://doi.org/10.1016/j.im.2016.03.006