DOI QR코드

DOI QR Code

A Mixed-Method Approach to Explore the Motivations and Constraints of Kiosks Consumers

  • Taehyee Um (Smart Tourism Education Platform, Kyung Hee University) ;
  • Hyunji Kim (Smart Tourism Education Platform, Kyung Hee University) ;
  • Jumi RHee (Smart Tourism Education Platform, Kyung Hee University) ;
  • Namho Chung (Smart Tourism Education Platform, Kyung Hee University)
  • Received : 2021.10.29
  • Accepted : 2022.01.19
  • Published : 2022.03.31

Abstract

Providing services using kiosks is actively carried out between suppliers and consumers. These service processes have recently begun to play a dominant role in transactions. However, previous self-service technology (SST) studies or kiosks have not fully reflected the changing environment surrounding these different technologies. To cover the updated business environments, we combined qualitative and quantitative research methods. Through qualitative research and a review of previous studies, the variables emphasized as motivations and constraints for kiosks use and those that can be newly illuminated were selected for this study. We then applied the variables to the research model to assess their influence. In terms of the motivations for using kiosks, the results suggest that perceived usefulness and compatibility as service quality, forced use, and perceived service providers' efficiency as provider polices, absorptive capacity, and habit as an individual characteristic and social influence as a subjective norm have a significant effect on the attitude toward kiosks. In terms of constraints, difficult to use and need for interaction predicts the attitude toward kiosks. Attitude toward kiosks, perceived behavioral control, and social influence are directly related to the intention to use kiosks. Lastly, intention to use kiosks plays a significant role as an antecedent of revisit intention. Using these empirical results, we propose both academic and practical implications for future kiosks use.

Keywords

Acknowledgement

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2019S1A3A2098438)

References

  1. Ahn, J. A., and Seo, S. (2018). Consumer responses to interactive restaurant self-service technology (IRSST): The role of gadget-loving propensity. International Journal of Hospitality Management, 74, 109-121. https://doi.org/10.1016/j.ijhm.2018.02.020
  2. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
  3. Al-Hawari, M., Hartley, N., and Ward, T. (2005). Measuring banks' automated service quality: A confirmatory factor analysis approach. Marketing Bulletin, 16, 1-19. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=16872099&lang=ko&site=eds-live.
  4. Armstrong, J. S., and Overton, T. S. (1977). Estimating nonresponse bias in mail surveys. Journal of Marketing Research, 14(3), 396-402. https://doi.org/10.1177/002224377701400320
  5. Bassellier, G., Reich, B. H., and Benbasat, I. (2001). Information technology competence of business managers: A definition and research model. Journal of Management Information Systems, 17(4), 159-182. https://doi.org/10.1080/07421222.2001.11045660
  6. Blin, F., and Munro, M. (2008). Why hasn't technology disrupted academics' teaching practices? Understanding resistance to change through the lens of activity theory. Computers & Education, 50(2), 475-490. https://doi.org/10.1016/j.compedu.2007.09.017
  7. Cetto, A., Klier, J., and Klier, M. (2015). Why should I do it myself? Hedonic and utilitarian motivations of customers' intention to use self-service technologies.
  8. Chen, C.-D., Fan, Y.-W., and Farn, C.-K. (2007). Predicting electronic toll collection service adoption: An integration of the technology acceptance model and the theory of planned behavior. Transportation Research Part C: Emerging Technologies, 15(5), 300-311. https://doi.org/10.1016/j.trc.2007.04.004
  9. Chen, J. V., Yen, D., Dunk, K., and Widjaja, A. E. (2015). The impact of using kiosk on enterprise systems in service industry. Enterprise Information Systems, 9(8), 835-860. https://doi.org/10.1080/17517575.2013.867542
  10. Chin, W. W., and Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares. Statistical Strategies for Small Sample Research, 1(1), 307-341.
  11. Chung, N., Han, H., and Joun, Y. (2015). Tourists' intention to visit a destination: The role of augmented reality (AR) application for a heritage site. Computers in Human Behavior, 50, 588-599. https://doi.org/10.1016/j.chb.2015.02.068
  12. Chung, N., Lee, H., Lee, S. J., and Koo, C. (2015). The influence of tourism website on tourists' behavior to determine destination selection: A case study of creative economy in Korea. Technological Forecasting and Social Change, 96, 130-143. https://doi.org/10.1016/j.techfore.2015.03.004
  13. Cohen, W. M., and Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 128-152.
  14. Conner, M., and Armitage, C. J. (1998). Extending the theory of planned behavior: A review and avenues for further research. Journal of Applied Social Psychology, 28(15), 1429-1464. https://doi.org/10.1111/j.1559-1816.1998.tb01685.x
  15. Cserdi, Z., and Kenesei, Z. (2021). Attitudes to forced adoption of new technologies in public transportation services. Research in Transportation Business & Management, 41, 100611.
  16. Curran, J. M., and Meuter, M. L. (2005). Self-service technology adoption: comparing three technologies. Journal of Services Marketing, 19(2), 103-113. https://doi.org/10.1108/08876040510591411
  17. Dabholkar, P. A. (1992). Role of affect and need for interaction in on-site service encounters. ACR North American Advances, 19, 563-569.
  18. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340.
  19. De Guinea, A. O., and Markus, M. L. (2009). Why break the habit of a lifetime? Rethinking the roles of intention, habit, and emotion in continuing information technology use. MIS Quarterly, 433-444.
  20. Fakis, A., Hilliam, R., Stoneley, H., and Townend, M. (2014). Quantitative analysis of qualitative information from interviews: A systematic literature review. Journal of Mixed Methods Research, 8(2), 139-161. https://doi.org/10.1177/1558689813495111
  21. Fan, A., Wu, L. L., and Mattila, A. S. (2016). Does anthropomorphism influence customers' switching intentions in the self-service technology failure context? Journal of Services Marketing, 30(7), 713-723. https://doi.org/10.1108/JSM-07-2015-0225
  22. Feng, W., Tu, R., Lu, T., and Zhou, Z. (2019). Understanding forced adoption of self-service technology: The impacts of users' psychological reactance. Behaviour & Information Technology, 38(8), 820-832. https://doi.org/10.1080/0144929X.2018.1557745
  23. Fishbein, M., and Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. Philosophy and Rhetoric, 10(2).
  24. Fornell, C., and Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 382-388. https://doi.org/10.1177/002224378101800313
  25. Fortune Business Insights, 2019. Retrieved from https://www.fortunebusinessinsights.com/industry -reports/facial-recognition-market-101061.
  26. Hair, J. F., Ringle, C. M., and Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202
  27. Hair, J. F., Ringle, C. M., and Sarstedt, M. (2013). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning, 46(1-2), 1-12. https://doi.org/10.1016/j.lrp.2013.01.001
  28. Hair Jr, J. F., Hult, G. T. M., Ringle, C., and Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). Los Angeles, CA: Sage Publications.
  29. Jang, S. H., Kim, R. H., and Lee, C. W. (2016). Effect of u-healthcare service quality on usage intention in a healthcare service. Technological Forecasting and Social Change, 113, 396-403. https://doi.org/10.1016/j.techfore.2016.07.030
  30. Joe, S., Kim, J., and Zemke, D. M. V. (2020). Effects of social influence and perceived enjoyment on kiosk acceptance: A moderating role of gender. International Journal of Hospitality & Tourism Administration, 1-28.
  31. Karahanna, E., Straub, D. W., and Chervany, N. L. (1999). Information technology adoption across time: a cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly, 183-213.
  32. Kazancoglu, I., and Yarimoglu, E. K. (2018). How food retailing changed in Turkey: Spread of self-service technologies. British Food Journal, 120(2), 290-308. https://doi.org/10.1108/BFJ-03-2017-0189
  33. Keaveney, S. M. (1995). Customer switching behavior in service industries: An eploratory study. Journal of Marketing, 59(2), 71-82. https://doi.org/10.1177/002224299505900206
  34. Kelly, P., Lawlor, J., and Mulvey, M. (2017). Customer roles in self-service technology encounters in a tourism context. Journal of Travel & Tourism Marketing, 34(2), 222-238. https://doi.org/10.1080/10548408.2016.1156612
  35. Khalifa, M., and Liu, V. (2007). Online consumer retention: contingent effects of online shopping habit and online shopping experience. European Journal of Information Systems, 16(6), 780-792. https://doi.org/10.1057/palgrave.ejis.3000711
  36. Kim, D. Y., and Grant, G. (2010). E-government maturity model using the capability maturity model integration. Journal of Systems and Information Technology, 12(3), 230-244. https://doi.org/10.1108/13287261011070858
  37. Kim, H., Koo, C., and Chung, N. (2021). The role of mobility apps in memorable tourism experiences of Korean tourists: Stress-coping theory perspective. Journal of Hospitality and Tourism Management, 49, 548-557. https://doi.org/10.1016/j.jhtm.2021.11.003
  38. Kim, H.-W., Chan, H. C., and Gupta, S. (2007). Value-based adoption of mobile internet: An empirical investigation. Decision Support Systems, 43(1), 111-126. https://doi.org/10.1016/j.dss.2005.05.009
  39. Kim, J. J., and Hwang, J. (2020). Merging the norm activation model and the theory of planned behavior in the context of drone food delivery services: Does the level of product knowledge really matter? Journal of Hospitality and Tourism Management, 42, 1-11. https://doi.org/10.1016/j.jhtm.2019.11.002
  40. Kim, M., and Qu, H. (2014). Travelers' behavioral intention toward hotel self-service kiosks usage. International Journal of Contemporary Hospitality Management, 26(2), 225-245. https://doi.org/10.1108/IJCHM-09-2012-0165
  41. Kim, M. J., Chung, N., Lee, C. K., and Preis, M. W. (2015). Motivations and use context in mobile tourism shopping: Applying contingency and task - technology fit theories. International Journal of Tourism Research, 17(1), 13-24. https://doi.org/10.1002/jtr.1957
  42. Kokkinou, A., and Cranage, D. A. (2015). Why wait? Impact of waiting lines on self-service technology use. International Journal of Contemporary Hospitality Management, 27(6), 1181-1197. https://doi.org/10.1108/IJCHM-12-2013-0578
  43. Koo, C., and Chung, N. (2014). Examining the eco-technological knowledge of Smart Green IT adoption behavior: A self-determination perspective. Technological Forecasting and Social Change, 88, 140-155. https://doi.org/10.1016/j.techfore.2014.06.025
  44. KREI. (2020). Retreived from http://library.krei.re.kr/pyxis-api/1/digital-files/1b7f1d91-86e3-4443-bf4faf13c51e1ac6.
  45. Kuo, F.-R., Hwang, G.-J., and Lee, C.-C. (2012). A hybrid approach to promoting students' web-based problem-solving competence and learning attitude. Computers & Education, 58(1), 351-364. https://doi.org/10.1016/j.compedu.2011.09.020
  46. Larson, R. B. (2019). Supermarket self-checkout usage in the United States. Services Marketing Quarterly, 40(2), 141-156. https://doi.org/10.1080/15332969.2019.1592861
  47. Lee, A. R., Son, S.-M., and Kim, K. K. (2016). Information and communication technology overload and social networking service fatigue: A stress perspective. Computers in Human Behavior, 55, 51-61. https://doi.org/10.1016/j.chb.2015.08.011
  48. Lee, B., and Cranage, D. A. (2018). Causal attributions and overall blame of self-service technology (SST) failure: Different from service failures by employee and policy. Journal of Hospitality Marketing & Management, 27(1), 61-84. https://doi.org/10.1080/19368623.2017.1337539
  49. Lee, H.-J., Fairhurst, A., and Cho, H. J. (2013). Gender differences in consumer evaluations of service quality: Self-service kiosks in retail. The Service Industries Journal, 33(2), 248-265. https://doi.org/10.1080/02642069.2011.614346
  50. Lee, H.-J., and Lyu, J. (2016). Personal values as determinants of intentions to use self-service technology in retailing. Computers in Human Behavior, 60, 322-332. https://doi.org/10.1016/j.chb.2016.02.051
  51. Lee, H., Jung, T. H., tom Dieck, M. C., and Chung, N. (2020). Experiencing immersive virtual reality in museums. Information & Management, 57(5), 103229.
  52. Lee, H. J., Cho, H. J., Xu, W., and Fairhurst, A. (2010). The influence of consumer traits and demographics on intention to use retail self-service checkouts. Marketing Intelligence & Planning, 28(1), 46-58. https://doi.org/10.1108/02634501011014606
  53. Lee, J., and Allaway, A. (2002). Effects of personal control on adoption of self-service technology innovations. Journal of Services Marketing, 16(6), 553-572. https://doi.org/10.1108/08876040210443418
  54. Lee, Y.-K., Park, J.-H., Chung, N., and Blakeney, A. (2012). A unified perspective on the factors influencing usage intention toward mobile financial services. Journal of Business Research, 65(11), 1590-1599. https://doi.org/10.1016/j.jbusres.2011.02.044
  55. Legris, P., Ingham, J., and Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191-204. https://doi.org/10.1016/S0378-7206(01)00143-4
  56. Leung, L. S. K., and Matanda, M. J. (2013). The impact of basic human needs on the use of retailing self-service technologies: A study of self-determination theory. Journal of Retailing and Consumer Services, 20(6), 549-559. https://doi.org/10.1016/j.jretconser.2013.06.003
  57. Lien, C.-H., Hsu, M. K., Shang, J.-Z., and Wang, S. W. (2019). Self-service technology adoption by air passengers: a case study of fast air travel services in Taiwan. The Service Industries Journal, 1-25.
  58. Liljander, V., Gillberg, F., Gummerus, J., and Van Riel, A. (2006). Technology readiness and the evaluation and adoption of self-service technologies. Journal of Retailing and Consumer Services, 13(3), 177-191. https://doi.org/10.1016/j.jretconser.2005.08.004
  59. Limayem, M., and Hirt, S. G. (2003). Force of habit and information systems usage: Theory and initial validation. Journal of the Association for Information Systems, 4(1), 3.
  60. Ling-Yee Li, E., Liu, B. S.-C., and Luk, S. T. (2017). Customer participation behavior in high-versus low-contact services: the multiple roles of customer trust. Journal of Global Marketing, 30(5), 322-341. https://doi.org/10.1080/08911762.2017.1343886
  61. Liu, S. (2012). The impact of forced use on customer adoption of self-service technologies. Computers in Human Behavior, 28(4), 1194-1201. https://doi.org/10.1016/j.chb.2012.02.002
  62. Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191. https://doi.org/10.1287/isre.2.3.173
  63. McKim, C. A. (2017). The value of mixed methods research: A mixed methods study. Journal of Mixed Methods Research, 11(2), 202-222. https://doi.org/10.1177/1558689815607096
  64. Meuter, M. L., Bitner, M. J., Ostrom, A. L., and Brown, S. W. (2005). Choosing among alternative service delivery modes: An investigation of customer trial of self-service technologies. Journal of Marketing, 69(2), 61-83. https://doi.org/10.1509/jmkg.69.2.61.60759
  65. Meuter, M. L., Ostrom, A. L., Bitner, M. J., and Roundtree, R. (2003). The influence of technology anxiety on consumer use and experiences with self-service technologies. Journal of Business Research, 56(11), 899-906. https://doi.org/10.1016/S0148-2963(01)00276-4
  66. Meuter, M. L., Ostrom, A. L., Roundtree, R. I., and Bitner, M. J. (2000). Self-service technologies: understanding customer satisfaction with technology-based service encounters. Journal of Marketing, 64(3), 50-64. https://doi.org/10.1509/jmkg.64.3.50.18024
  67. Mohlmann, M. (2015). Collaborative consumption: determinants of satisfaction and the likelihood of using a sharing economy option again. Journal of Consumer Behaviour, 14(3), 193-207. https://doi.org/10.1002/cb.1512
  68. Moore, G. C., and Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222. https://doi.org/10.1287/isre.2.3.192
  69. Moser, A., and Korstjens, I. (2018). Series: Practical guidance to qualitative research. Part 3: Sampling, data collection and analysis. European Journal of General Practice, 24(1), 9-18. https://doi.org/10.1080/13814788.2017.1375091
  70. Nijssen, E. J., Schepers, J. J., and Belanche, D. (2016). Why did they do it? How customers' self-service technology introduction attributions affect the customer-provider relationship. Journal of Service Management, 27(3), 276-298. https://doi.org/10.1108/JOSM-08-2015-0233
  71. Oh, H., Jeong, M., and Baloglu, S. (2013). Tourists' adoption of self-service technologies at resort hotels. Journal of Business Research, 66(6), 692-699. https://doi.org/10.1016/j.jbusres.2011.09.005
  72. Pallud, J., and Straub, D. W. (2014). Effective website design for experience-influenced environments: The case of high culture museums. Information & Management, 51(3), 359-373. https://doi.org/10.1016/j.im.2014.02.010
  73. Parasuraman, A. (2000). Technology Readiness Index (TRI) a multiple-item scale to measure readiness to embrace new technologies. Journal of Service Research, 2(4), 307-320. https://doi.org/10.1177/109467050024001
  74. Rapp, A., Ahearne, M., Mathieu, J., and Schillewaert, N. (2006). The impact of knowledge and empowerment on working smart and working hard: The moderating role of experience. International Journal of Research in Marketing, 23(3), 279-293. https://doi.org/10.1016/j.ijresmar.2006.02.003
  75. Reinders, M. J., Dabholkar, P. A., and Frambach, R. T. (2008). Consequences of forcing consumers to use technology-based self-service. Journal of Service Research, 11(2), 107-123. https://doi.org/10.1177/1094670508324297
  76. Rogers, E. (2003). Diffusion of innovations, 5th edn (NY, Free Press).
  77. Rosenbaum, M. S., and Wong, I. A. (2015). If you install it, will they use it? Understanding why hospitality customers take "technological pauses" from self-service technology. Journal of Business Research, 68(9), 1862-1868. https://doi.org/10.1016/j.jbusres.2015.01.014
  78. Sarstedt, M., Ringle, C. M., and Hair, J. F. (2014). PLS-SEM: Looking back and moving forward. Long Range Planning, 47(3), 132-137. https://doi.org/10.1016/j.lrp.2014.02.008
  79. Shih, H.-p., Lai, K.-h., and Cheng, T. (2013). Informational and relational influences on electronic word of mouth: An empirical study of an online consumer discussion forum. International Journal of Electronic Commerce, 17(4), 137-166. https://doi.org/10.2753/JEC1086-4415170405
  80. Shin, H., and Perdue, R. R. (2019). Self-Service Technology Research: a bibliometric co-citation visualization analysis. International Journal of Hospitality Management, 80, 101-112. https://doi.org/10.1016/j.ijhm.2019.01.012
  81. Singh, N., Sinha, N., and Liebana-Cabanillas, F. J. (2020). Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence. International Journal of Information Management, 50, 191-205. https://doi.org/10.1016/j.ijinfomgt.2019.05.022
  82. So, K. K. F., Oh, H., and Min, S. (2018). Motivations and constraints of Airbnb consumers: Findings from a mixed-methods approach. Tourism Management, 67, 224-236. https://doi.org/10.1016/j.tourman.2018.01.009
  83. Tahamtan, I., Pajouhanfar, S., Sedghi, S., Azad, M., and Roudbari, M. (2017). Factors affecting smartphone adoption for accessing information in medical settings. Health Information & Libraries Journal, 34(2), 134-145. https://doi.org/10.1111/hir.12174
  84. Tommasetti, A., Troisi, O., and Vesci, M. (2017). Measuring customer value co-creation behavior: Developing a conceptual model based on service-dominant logic, Journal of Service Theory and Practice, 27(5), 930-950. https://doi.org/10.1108/JSTP-10-2015-0215
  85. Um, T., and Chung, N. (2021). Does smart tourism technology matter? Lessons from three smart tourism cities in South Korea. Asia Pacific Journal of Tourism Research, 26(4), 396-414. https://doi.org/10.1080/10941665.2019.1595691
  86. Um, T., Kim, T., and Chung, N. (2020). How does an intelligence chatbot affect customers compared with self-service technology for sustainable services? Sustainability, 12(12), 5119.
  87. Venkatesh, V., Brown, S. A., and Bala, H. (2013). Bridging the qualitative-quantitative divide: Guidelines for conducting mixed methods research in information systems. MIS Quarterly, 21-54.
  88. Venkatesh, V., and Morris, M. G. (2000). Why don't men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS Quarterly, 115-139.
  89. Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425-478.
  90. Venkatesh, V., Thong, J. Y., and Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 157-178.
  91. Wang, C., Harris, J., and Patterson, P. (2013). The roles of habit, self-efficacy, and satisfaction in driving continued use of self-service technologies: A longitudinal study. Journal of Service Research, 16(3), 400-414. https://doi.org/10.1177/1094670512473200
  92. Wang, C., Harris, J., and Patterson, P. G. (2012). Customer choice of self-service technology: The roles of situational influences and past experience. Journal of Service Management, 23(1), 54-78. https://doi.org/10.1108/09564231211208970
  93. Wang, C., Harris, J., and Patterson, P. G. (2017). Modeling the habit of self-service technology usage. Australian Journal of Management, 42(3), 462-481. https://doi.org/10.1177/0312896216640862
  94. Wang, M. C. H. (2012). Determinants and consequences of consumer satisfaction with self-service technology in a retail setting. Managing Service Quality: An International Journal, 22(2), 128-144.
  95. Wang, Y.-S., and Shih, Y.-W. (2009). Why do people use information kiosks? A validation of the unified theory of acceptance and use of technology. Government Information Quarterly, 26(1), 158-165. https://doi.org/10.1016/j.giq.2008.07.001
  96. Wessels, L., and Drennan, J. (2010). An investigation of consumer acceptance of M-banking. International Journal of Bank Marketing, 28(7), 547-568. https://doi.org/10.1108/02652321011085194
  97. Yang, H., Lee, H., and Zo, H. (2017). User acceptance of smart home services: an extension of the theory of planned behavior. Industrial Management & Data Systems, 117(1), 68-89. https://doi.org/10.1108/IMDS-01-2016-0017
  98. Yang, K. (2012). Consumer technology traits in determining mobile shopping adoption: An application of the extended theory of planned behavior. Journal of Retailing and Consumer Services, 19(5), 484-491. https://doi.org/10.1016/j.jretconser.2012.06.003
  99. Ye, C., and Potter, R. (2011). The role of habit in post-adoption switching of personal information technologies: An empirical investigation. Communications of the Association for Information Systems, 28(1), 35.
  100. Zhou, T. (2011). The impact of privacy concern on user adoption of location-based services. Industrial Management & Data Systems, 111(2), 212-226. https://doi.org/10.1108/02635571111115146