References
- Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26-38. https://doi.org/10.1109/MSP.2017.2743240
- Baccianella, S., Esuli, A., and Sebastiani, F. (2010). SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10), 2200-2204.
- Boute, R. N., Gijsbrechts, J., van Jaarsveld, W., and Vanvuchelen, N. (2021). Deep reinforcement learning for inventory control: A roadmap. European Journal of Operational Research, 298(2), 401-412. https://doi.org/10.1016/j.ejor.2021.07.016.
- Chai, D., Wu, W., Han, Q., Wu, F., and Li, J. (2020). Description based text classification with reinforcement learning. International Conference on Machine Learning, 1371-1382.
- Chen, R., Zhou, Y., Zhang, L., and Duan, X. (2019). Word-level sentiment analysis with reinforcement learning. IOP Conference Series: Materials Science and Engineering, 490, 062063. https://doi.org/10.1088/1757-899X/490/6/062063
- Chu, T., Wang, J., Codeca, L., and Li, Z. (2020). Multi-agent deep reinforcement learning for large-scale traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 21, 1086-1095. https://doi.org/10.1109/TITS.2019.2901791
- Cote, M., Kadar, A., Yuan, X., Kybartas, B. A., Barnes, T., Fine, E., Moore, J., Hausknecht, M. J., Asri, L. E., Adada, M., Tay, W., and Trischler, A. (2018). TextWorld a learning environment for text-based games. Computer Games Workshop at ICML/IJCAI. arXiv:1806.11532.
- Deshpande, A., and Fleisig, E. (2020). Sentiment Analysis for Reinforcement Learning. arXiv:2010.02316.
- Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), 4171-4186.
- Diallo, E. A. O., Sugiyama, A., and Sugawara, T. (2020). Coordinated behavior of cooperative agents using deep reinforcement learning. Neuro computing, 396, 230-240. https://doi.org/10.1016/j.neucom.2018.08.094
- Elavarasan, D., and Vincent, P. M. (2020). Crop yield prediction using deep reinforcement learning model for sustainable agrarian applications. IEEE Access, 8, 86886-86901. https://doi.org/10.1109/ACCESS.2020.2992480
- Goh, O. S., Fung, C. C., and Depickere, A. (2008). Domain knowledge query conversation bots in instant messaging (IM). Knowledge-Based Systems, 21(7), 681-691. https://doi.org/10.1016/j.knosys.2008.03.055
- Goldwaser, A., and Thielscher, M. (2020). Deep reinforcement learning for general game playing. Proceedings of the AAAI Conference on Artificial Intelligence, 34(2), 1701-1708.
- Hasselt, H. V., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double Q-learning. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), 2094-2100.
- Jonsson, A. (2019), Deep reinforcement learning in medicine. Kidney Dis, 5, 18-22. https://doi.org/10.1159/000492670
- Keller, T. R., and Klinger, U. (2019). Social bots in election campaigns: Theoretical, empirical, and methodological implications. Political Communication, 36(1), 171-189. https://doi.org/10.1080/10584609.2018.1526238
- Koratamaddi, P., Wadhwani, K., Gupta, M., and Sanjeevi, S. G. (2021). Market sentiment-aware deep reinforcement learning approach for stock portfolio allocation. Engineering Science and Technology, an International Journal, 24(4), 848-859. https://doi.org/10.1016/j.jestch.2021.01.007
- Kulkarni, C. S., Bhavsar, A. U., Pingale, S. R., and Kumbhar, S. S. (2017). BANK CHAT BOT-an intelligent assistant system using NLP and machine learning. International Research Journal of Engineering and Technology, 4(5), 2374-2377.
- Liu, R., Nageotte, F., Zanne, P., Mathelin, M. D., and Dresp, B. (2021). Deep reinforcement learning for the control of robotic manipulation: A focussed mini-review. Robotics, 10(22), 1-13. https://doi.org/10.3390/robotics10010022
- Meenakshi, Banerjee, A., Intwala, N., and Sawant, V. (2020). Sentiment analysis of amazon mobile reviews. In M. Tuba, S. Akashe, and A. Joshi (Eds.), ICT Systems and Sustainability. Advances in Intelligent Systems and Computing, 1077. Singapore. https://doi.org/10.1007/978-981-15-0936-0_4
- McAuley, J., and Leskovec, J. (2013). From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews. Proceedings of the 22nd international conference on World Wide Web.
- Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
- Pang, B., and Lee, L. (2005). Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. Association for Computational Linguistics, 115-124.
- Peng, H., Ma, Y., Poria, S., Li, Y., and Cambria, E. (2021). Phonetic-enriched text representation for chinese sentiment analysis with reinforcement learning. Information Fusion,70, 88-99. https://doi.org/10.1016/j.inffus.2021.01.005
- Prollochs, N., Feuerriegel, S., Lutz, B., and Neumann, D. (2020). Negation scope detection for sentiment analysis a reinforcement learning framework for replicating human interpretations. Information Sciences, 536, 205-221.
- Rowley, J. (2000). Product searching with shopping bots. Internet Research, 10(3), 203-214. https://doi.org/10.1108/10662240010331957
- Shahmanzari, M., and Ozkan, S. (2014). Accessing the effect of e-commerce intelligent bots on online consumers' post-adoption behavior for future use. American Academic & Scholarly Research Journal, 6(4), 163.
- Wang, J., Sun, C., Li, S., Wang, J., Si, L., Zhang, M., Liu, X., and Zhou, G. (2019). Human-like decision making: Document-level aspect sentiment classification via hierarchical reinforcement learning. EMNLP, 5581-5590.
- Wang, W. Y., Li, J., and He, X. (2018). Deep reinforcement learning for NLP. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts, 19-21.
- Yang, M., Jiang, Q., Shen, Y., Wu, Q., Zhao, Z., and Zhou, W. (2019). Hierarchical human-like strategy for aspect-level sentiment classification with sentiment linguistic knowledge and reinforcement learning. Neural Networks: The Official Journal of the International Neural Network Society, 117, 240-248. https://doi.org/10.1016/j.neunet.2019.05.021
- Yu, L., Gao, Z., Qin, S., Zhang, M., Shen, C., Guan, X., and Yue, D. (2020). Deep Reinforcement Learning for Smart Grid Protection Against Coordinated Multistage Transmission Line Attacks. arXiv:2011. 14526.
- Yu, S., Nayak, T., Majumder, N., and Poria, S. (2021). Aspect sentiment triplet extraction using reinforcement learning. Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 3603-3607.
- Zhang, C. (2019). Sentiment Analysis and Deep Reinforcement Learning for Algorithmic Trading. Retrieved from http://ink-ron.usc.edu/xiangren/ml4know19spring/public/midterm/Chi_Zhang_Report.pdf
- Zhang, D., Li, S., Zhu, Q., and Zhou, G. (2019). Modeling the clause-level structure to multimodal sentiment analysis via reinforcement learning. 2019 IEEE International Conference on Multimedia and Expo (ICME), 730-735.
- Zhao, D., Wang, H., Shao, K., and Zhu, Y. (2016). Deep reinforcement learning with experience replay based on SARSA. 2016 IEEE Symposium Series on Computational Intelligence (SSCI), 1-6.