DOI QR코드

DOI QR Code

엔진 관성력과 피칭모멘트 저감을 위한 밸런스샤프트의 동역학 설계

Dynamic Analysis Design of Balance Shaft for Reducing Engine Inertia Force and Pitching Moment

  • 김병준 (인제대학교 기계공학과) ;
  • 부광석 (인제대학교 고안전차량핵심기술연구소) ;
  • 김흥섭 (인제대학교 고안전차량핵심기술연구소)
  • Kim, Byeong Jun (School of Mechanical Engineering, Inje University) ;
  • Boo, Kwang Suk (High Safety Vehicle Technology Research Center, Inje University) ;
  • Kim, Heung Seob (High Safety Vehicle Technology Research Center, Inje University)
  • 투고 : 2022.02.21
  • 심사 : 2022.04.20
  • 발행 : 2022.04.28

초록

차량 실내소음이 엔진의 고출력화와 경량화로 인해 더욱 심각해져 엔진진동의 저감의 중요성이 높아지고 있다. 최근 엔진진동 저감의 대표적인 방법으로 밸런스샤프트 부착이 제시되고 있다. 밸런스샤프트는 피스톤과 콘로드 등의 왕복운동에서 발생하는 진동을 임의의 편심질량을 이용하여 상쇄시키는 장치이다. 따라서 밸런스샤프트는 연비향상 및 차량의 승차감을 동시에 향상시킬 수 있다. 본 논문은 엔진구조로 인해 발생하는 관성력을 유도하고 이를 상쇄하기 위한 밸런스샤프트의 불평형량과 형상을 제시한다. 제시된 두가지 형상의 밸런스샤프트를 ADAMS 다물체동역학 모델로 구현하고, 이를 동역학 시뮬레이션을 통해 실제 거동상태에서의 관성력의 저감을 확인하였다.

The importance of engine vibration reduction is increasing as the vehicle interior noise becomes more serious due to higher output and lighten weight trends. Recently, the balance shaft attachment has been proposed as a representative method for the engine vibration reduction. The balance shaft is a device that cancels the vibrations generated in the reciprocating motion of the piston and the conrod by using an arbitrary eccentric mass, and can improve fuel efficiency and ride comfort at the same time. This paper proposes the unbalance amount and shape of the balance shaft to induce and offset the inertia force generated by the engine structure. The proposed two-shaped balance shaft was implemented as an ADAMS multi-body dynamics model, and the reduction of the inertial force in the actual behavior was confirmed through dynamic simulation.

키워드

과제정보

This paper is supported by the 2019 academic research grant of Inje university.

참고문헌

  1. J. Hu. D. Qin. Y. Zhao & Y. Liu. (2009). Study on Natural Torsional Vibration Characteristics of Dual Mass Flywheel-Radial Spring Type Torsional Vibration Damper. SAE 2009-01-2062.
  2. H. Y. Isaac & J. S. Chen. (2007). NVH Analysis of Balancer Chain Drives with the Compliant Sprocket with a Dual Mass Flywheel. SAE 2007-01-2415.
  3. K. Borislav, R. Thomas & S. Chiara. (2015). Numerical Investigation in a Gear Drive of an Engine Balancing Unit with respect to Noise, Friction and Durability. SAE 2015-24-2526.
  4. S. Anadan, W. Sachin, G. K. Chaitanya & M. Hemant. (2013) Elastomer Isolator to Meet Noise Vibration and Durability of Internal Combustion Engine. SAE 2013-01-2380.
  5. M. R. Cho, D. Y. Oh & D. C. Han. (2002). The Effect of Balance Weight on the Lubrication and Friction Characteristics of Crankshaft System. Trans. Korean Soc. Mech. Eng. A, 26(8), 1585-1590.
  6. R. F. Alexandre, C. Caetano & B. Frederico. (2008) Balancer Shaft Development for In-line 3 Cylinder High Speed Diesel Engine. SAE 2008-36-0219.
  7. J. F. Frnak & H. Allen. (2011) Polymer Gear Development to Improve Efficiency and NVH Performance of an Engine Mass Balance System. SAE 2011-01-0405.
  8. Y. Chen, S. Yuan, Y. Yi & Z. Fuquan. (2012) Design of Engine Gear Driven Mass Balance Unit and NVH Performance Optimization. SAE 2012-01-0890.
  9. S. Richard & T. Dinu. (2002) A Characteristic Parameter to Estimate the Optimum Counterweight Mass of a 4 Cylinder In-Line Engine. SAE 2002-01-0486.
  10. A. B. Selim & A. Nabarrete. (2015). Influence of Inertial Forces and Mass Balancer on Internal Combustion Engine Dynamics. SAE 2015-36-0324.
  11. D. W. Lee, C. J. Kim, C. Y. Bae & B. H. Lee. (2010). Optimal Location Issue on both Supporting Bearing and Unbalance Mass of the Balance Shaft Module in a Inline 4-Cylinder Engine. KSAE, 18(4), 1-7.
  12. K. H. Suh & H. S. Yoon. (2000) A Study on tbe Balancing of the Three Cylinder Engine with Balance Shaft. SAE 2000-01-0601.
  13. K. H. Suh, H. K. Min & I. B. Chyun. (2002). Vibration Analysis of In-line Three Cylinder Engine with Balance Shaft using DADS. SAE 2002-03-0017.
  14. Kim. T. H. & Song. H. S. (2017). Vibration Analysis of In-line 3 Cylinder Engine with Balance Shaft Module on Dynamic Model. Trans. Korean Soc. Noise Vib. Eng., 27(3), 268-277. https://doi.org/10.5050/KSNVE.2017.27.3.268
  15. B. Y. Park & S. J. Hur. (2001). Vehicle Dynamics. Moonundang. 173-214.
  16. T. H. Kim. (2020). Balance Shaft Unit Design with ADAMS Dynamic Analysis. Master dissertation. Inje University, Gimhae.