DOI QR코드

DOI QR Code

A study on the analysis of current status of Seonakdong River algae using hyperspectral imaging

초분광영상을 이용한 서낙동강 조류 발생현황 분석에 관한 연구

  • Kim, Jongmin (Department of Civil and Environmental Engineering, Myongji University) ;
  • Gwon, Yeonghwa (Department of Civil and Environmental Engineering, Dankook University) ;
  • Park, Yelim (Department of Environmental Science and Engineering, Inje University) ;
  • Kim, Dongsu (Department of Civil and Environmental Engineering, Dankook University) ;
  • Kwon, Jae Hyun (Department of Environmental Science and Engineering, Inje University) ;
  • Kim, Young Do (Department of Civil and Environmental Engineering, Myongji University)
  • 김종민 (명지대학교 토목환경공학과) ;
  • 권영화 (단국대학교 토목환경공학과) ;
  • 박예림 (인제대학교 환경공학과) ;
  • 김동수 (단국대학교 토목환경공학과) ;
  • 권재현 (인제대학교 환경공학과) ;
  • 김영도 (명지대학교 토목환경공학과)
  • Received : 2021.11.29
  • Accepted : 2022.03.29
  • Published : 2022.04.30

Abstract

Algae is an indispensable primary producer in the ecosystem by supplying energy to consumers in the aquatic ecosystem, and is largely divided into green algae, blue-green algae, and diatoms. In the case of blue-green algae, the water temperature rises, which occurs in the summer and overgrows, which is the main cause of the algae bloom. Recently, the change in the occurrence time and frequency of the algae bloom is increasing due to climate change. Existing algae survey methods are performed by collecting water and measuring through sensors, and time, cost and manpower are limited. In order to overcome the limitations of these existing monitoring methods, research has been conducted to perform remote monitoring using spectroscopic devices such as multispectral and hyperspectral using satellite image, UAV, etc. In this study, we tried to confirm the possibility of species classification of remote monitoring through laboratory-scale experiments through algal culture and river water collection. In order to acquire hyperspectral images, a hyperspectral sensor capable of analyzing at 400-1000 nm was used. In order to extract the spectral characteristics of the collected river water for classification of algae species, filtration was performed using a GF/C filter to prepare a sample and images were collected. Radiation correction and base removal of the collected images were performed, and spectral information for each sample was extracted and analyzed through the process of extracting spectral information of algae to identify and compare and analyze the spectral characteristics of algae, and remote sensing based on hyperspectral images in rivers and lakes. We tried to review the applicability of monitoring.

조류는 수생태계에서 소비자의 에너지를 공급하여 생태계 내 없어서는 안 될 1차 생산자로서 크게 녹조류, 남조류, 규조류로 나뉘어진다. 남조류의 경우 수온이 상승하여 여름철 발생하여 과대 증식하여 녹조현상의 주원인이 되며, 최근 기후 변화로 인해 녹조현상의 발생시기의 변화와 빈도수가 늘고 있는 추세이다. 기존의 조류 조사 방식은 채수 및 센서를 통한 측정으로 이루어지고 있으며 시간, 비용 및 인력의 한계가 나타난다. 이러한 기존 모니터링 방법의 한계를 극복 하기위해 위성영상이나 무인항공기(Unmanned Aearial Vehicles, UAV), 등 탑제체를 운용한 다중분광 및 초분광과 같은 분광기기를 이용하여 원격 모니터링을 수행하는 연구가 진행되어 왔다. 본 연구에서는 조류 배양액 및 하천수 채수를 통한 실험실 규모의 실험을 통해 원격 모니터링의 종 구분에 대한 가능성에 대하여 확인 해보고자 하였다. 초분광 영상을 취득하기 위해 400-1000 nm에서 분석할 수 있는 초분광 센서를 활용하였다. 채수한 하천수의 조류 종 구분을 위한 분광특성을 추출하기 위해 GF/C필터를 이용하여 여과를 진행하여 시료를 제조하여 영상을 수집하였다. 수집된 영상을 방사보정 및 Base (하천수 및 배양보존액 통칭) 제거를 진행하였고 조류의 분광 정보 추출 과정을 통해 시료별 분광 정보를 추출, 분석하여 조류의 분광특성을 파악, 비교분석하여 하천·호소에서의 초분광영상 기반 원격탐사 모니터링의 적용성을 검토하고자 하였다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었습니다(과제번호 21DPIW-C153746-03).

References

  1. Back, S.C., Park, J.K., and Park, J.H. (2016). "Spatial distribution mapping of cyanobacteria in Daecheong reservoir using the satellite imagery." Korean Society of Agricultural Engineers, Vol. 58, No. 2, pp. 53-63. https://doi.org/10.5389/KSAE.2016.58.2.053
  2. Choe, E.Y., Jung, K.M,. Yoon, J.S., Jang, J.H., Kim, M.J., and Lee, H.J. (2021). "Application of spectral indices to drone-based multispectral remote sensing for algal bloom monitoring in the river." Korean Journal of Remote Sensing, Vol. 37, No. 3, pp. 419-430. https://doi.org/10.7780/KJRS.2021.37.3.5
  3. Corning (2017). Corning microHSI 410 SHARK: Integrated, coherent, airborne hyperspectral imaging system, accessed 2 May 2020, .
  4. Gwon, Y.H., Kim, D.S., and You, H.J. (2020). "A standardized procedure on building spectral library for hazardous chemicals mixed in river flow using hyperspectral image." Korea Water Resources Association, Vol. 52, No. 10, pp. 845-859.
  5. Kim, E.J., Nam, S.H., Koo, J.W., and Hwang, T.M. (2018). "Monitoring algal bloom in river using unmanned aerial vehicle (UAV) imagery technique." Journal of Korean Society of Water and Wastewater, Vol. 32, No. 6, pp. 573-581. https://doi.org/10.11001/jksww.2018.32.6.573
  6. Kim, E.J., Nam, S.H., Koo, J.W., Lee, S.L.M., Ahn, C.H., Park, J.R., Park, J.I., and Hwang, T.M. (2017). "Applicability of unmanned aerial vehicle for chlorophyll-a map in river." Journal of the Korean Society of Water and Wastewater, Vol. 31, No. 3, pp. 197-204. https://doi.org/10.11001/jksww.2017.31.3.197
  7. Kim, S.H., Lee, G.S., Ma, S.L., and Kook, M.J. (2005). "Current status of hyperspectral remote sensing: Principle, data processing techniques, and application." Korean Journal of Remote Sensing, Vol. 21, No. 4, pp. 341-369 https://doi.org/10.7780/KJRS.2005.21.4.341
  8. Kim, W.K., and Choi, J.M. (2018). "Analysis of hyperspectral radiometer and water constituents data for remote estimation of water quality." Korea Society of Surveying, Vol. 36, No. 4, pp. 205-211.
  9. Lee, H., Gang, T.G., Min, J.H., Kim, K.H., Nam, G.B., and Ha, R. (2014). A study on romote monitoring of algal distribution using hyperspectral imagery in Lake Uiam. National Institute of Environmental, No. TRKO021500013971.
  10. Shin, J.S., Kim, K.Y., and Ryu, J.-H. (2020). "Comparative study on hyperspectral and satellite image for the estimation of Chlorophyll a concentration on Coastal areas." Korean Journal of Remote Sensing, Vol. 36, No. 2-2, pp. 309-323. https://doi.org/10.7780/KJRS.2020.36.2.2.7
  11. Xie, H., Luo, X., Hwang, S., Xu, X., Tong, X., Jin, Y., Pan, H., and Zhou, B. (2014). "New hyperspectral difference water index for the extraction of urban water bodies by the use of airborne hyperspectral images." Journal of Applied Remote Sensing, Vol. 8, No. 1, 085098. https://doi.org/10.1117/1.JRS.8.085098
  12. Yi, G.H., Jeon, H.S., Kim, T.G., and Cho, G.S. (1997). "The Interpretation of Chlorophyll a and transparency in a lake using LANDSAT TM imagery." Korean Journal of Remote Sensing, Vol. 13, No. 1, pp. 47-56. https://doi.org/10.7780/KJRS.1997.13.1.47
  13. You, H.J. (2018). Development of riverine bathymetry survey technique using drone-based hyperspectral image. Ph. D. dissertation, University of Dankook.