DOI QR코드

DOI QR Code

게이트 하부 식각 구조 및 HfO2 절연층이 도입된 AlGaN/GaN 기반 전계 효과 트랜지스터

AlGaN/GaN Field Effect Transistor with Gate Recess Structure and HfO2 Gate Oxide

  • 김유경 (단국대학교 화학공학과) ;
  • 손주연 (단국대학교 화학공학과) ;
  • 이승섭 (단국대학교 화학공학과) ;
  • 전주호 (단국대학교 화학공학과) ;
  • 김만경 (단국대학교 화학공학과) ;
  • 장수환 (단국대학교 화학공학과)
  • Kim, Yukyung (Department of Chemical Engineering, Dankook University) ;
  • Son, Juyeon (Department of Chemical Engineering, Dankook University) ;
  • Lee, Seungseop (Department of Chemical Engineering, Dankook University) ;
  • Jeon, Juho (Department of Chemical Engineering, Dankook University) ;
  • Kim, Man-Kyung (Department of Chemical Engineering, Dankook University) ;
  • Jang, Soohwan (Department of Chemical Engineering, Dankook University)
  • 투고 : 2021.12.20
  • 심사 : 2021.12.29
  • 발행 : 2022.05.01

초록

HfO2을 게이트 산화막으로 갖는 AlGaN/GaN 기반 고이동도 전계효과 트랜지스터(high electron mobility transistor, HEMT)의 노멀리 오프(normally-off) 작동 구현을 위하여 게이트 리세스(gate-recess) 깊이에 따른 소자 특성이 시뮬레이션을 통하여 분석되었다. 전통적인 HEMT 구조, 3 nm의 두께를 갖는 게이트 리세스된 HEMT 구조, 게이트 영역에 AlGaN 층을 갖지 않는 HEMT 구조가 모사되었다. 전통적인 HEMT 구조는 노멀리 온(normally-on) 특성을 나타내었으며, 0 V의 게이트 전압 및 15 V의 드레인 전압 환경에서 0.35 A의 드레인 전류 특성을 나타내었다. 3 nm의 두께를 갖는 게이트 리세스된 HEMT 구조는 2DEG(2-dimensional electron gas) 채널의 전자 농도 감소로 인해, 같은 전압 인가 조건에서 0.15 A의 드레인 전류 값을 보였다. 게이트 영역에 AlGaN 층을 갖지 않는 HEMT 구조는 뚜렷한 노멀리 오프 동작을 나타내었으며, 0 V의 동작전압 값을 확인할 수 있었다.

AlGaN/GaN based HfO2 MOSHEMT (metal oxide semiconductor high electron transistor) with different gate recess depth was simulate to demonstrate a successful normally-off operation of the transistor. Three types of the HEMT structures including a conventional HEMT, a gate-recessed HEMT with 3 nm thick AlGaN layer, and MIS-HEMT without AlGaN layer in the gate region. The conventional HEMT showed a normally-on characteristics with a drain current of 0.35 A at VG = 0 V and VDS = 15 V. The recessed HEMT with 3 nm AlGaN layer exhibited a decreased drain current of 0.15 A under the same bias condition due to the decrease of electron concentration in 2DEG (2-dimensional electron gas) channel. For the last HEMT structure, distinctive normally- off behavior of the transistor was observed, and the turn-on voltage was shifted to 0 V.

키워드

과제정보

이 성과는정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1056647).

참고문헌

  1. Weimer, P. K., "The TFT A New Thin Film Transistor," Proc. IRE., 50(6), 1462-1469(1962). https://doi.org/10.1109/JRPROC.1962.288190
  2. Fei, X., Wang, Y., Luo, X., Cao, F. and Yu, C., "Potential Study of the Enhanced Breakdown Voltage GaN MISFET Based on Partial AlN Buried Layer," Superlattices Microstruct., 114, 314-320(2018). https://doi.org/10.1016/j.spmi.2017.12.051
  3. Choi, J., Kim, S. and Kim, H., "Damage to Amorphous Indium-gallium-zinc-oxide Thin Film Transistors Under Cl2 and BCl3 Plasma," Korean J. Chem. Eng., 35(6), 1348-1353(2018). https://doi.org/10.1007/s11814-018-0034-8
  4. Shekar, B., Lee, J. and Rhee, S., "Organic Thin Film Transistors: Materials, Processes and Devices," Korean J. Chem. Eng., 21(1), 267-285(2004). https://doi.org/10.1007/BF02705409
  5. Mishra, U. K., Parikh, P. and Wu, Y. F., "AlGaN/GaN HEMTsan Overview of Device Operation and Applications," Proc. IEEE, 90(6), 1022-1031(2002). https://doi.org/10.1109/JPROC.2002.1021567
  6. Wu, Y. F., Kapolnek, D., Ibbetson, J. P., Parikh, P., Keller, B. P. and Mishra, U. K., "Very-high Power Density AlGaN/GaN HEMTs," IEEE Trans. Electron Devices, 48(3), 586-590(2001). https://doi.org/10.1109/16.906455
  7. Kobayashi, T., Abe, H., Niimura, Y., Yamada, T., Kurosaki, A., Hosen, T. and Fujihira, T., "High Voltage Power MOSFETs Reached Almost to the Silicon Limit," Proc. ISPSD, 435-438(2001).
  8. Saito, W., Takada, Y., Kuraguchi, M., Tsuda, K., Omura, I., Ogura, T. and Ohashi, H., "High Breakdown Voltage AlGaN GaN Power HEMT Design and High Current Density Switching Behavior," IEEE Trans. Electron Devices, 50(12), 2528-2531(2003). https://doi.org/10.1109/TED.2003.819248
  9. Kaminski, N. and Hilt, O., "SiC and GaN Devices - Wide Bandgap is Not All the Same," IET Circuits Devices Syst., 8(3), 227-236(2014). https://doi.org/10.1049/iet-cds.2013.0223
  10. Liu, S., Yang, S., Tang, Z., Jiang, Q., Liu, C., Wang, M. and Chen, K. J., "Performance Enhancment of Normally-Off Al2O3/AlN/GaN MOS-Channel HEMTs with and ALD-Grown AlN Interfacial Layer," Proc. of the 26th Int. Symp. Power Semiconductor Devices & IC's (ISPSD), 362-365(2014).
  11. Chen, K. J., Yuan, L., Wang, M. J., Chen, H., Huang, S., Zhou, Q., Zhou, C., Li, B. K. and Wang, J. N., "Physics of Fluorine Plasma ion Implantation for GaN Normally-off HEMT Technology," Tech. Dig. Int. Electron Devices Meet., 19.4.1-19.4.4(2011).
  12. Uemeto, Y., Hikita, M., Ueno, H., Matsuo, H., Ishida, H., Yanagihara, M., Ueda, T., Tanaka, T. and Ueda, D., "Gate Injection Transistor (GIT) - A Normally-off AlGaN/GaN Power Transistor Using Conductivity Modulation," IEEE Trans. Electron Devices, 54(12), 3393-3399(2007). https://doi.org/10.1109/TED.2007.908601
  13. Wang, H., Wang, J., Li, M., Cao, Q., Yu, M., He, Y. and Wu, W., "823-mA/mm Drain Current Density and 945-MW/cm2 Baliga's Figure-of-Merit Enhancement-mode GaN MISFETs with a Novel PEALD-AlN-LPCVD-Si3N4 Dual-gate Dielectric," IEEE Electron Device Lett., 39(12), 1888-1891(2018). https://doi.org/10.1109/led.2018.2879543
  14. Zhao, Y., Wang, C., Zheng, X., Ma, X., He, Y., Liu, K., Li, A., Peng, Y., Zhang, C. and Hao, Y., "Effects of Recess Depths on Performance of AlGaN/GaN Power MISHEMTs on the Si Substrates and Threshold Voltage Model of Different Recess Depths for the Using HfO2 Gate Insulator," Solid-State Electronics, 163, 107649 (2020). https://doi.org/10.1016/j.sse.2019.107649
  15. Zhao, Y., Xu, S., Tao, H., Zhang, Y., Zhang, C., Feng, L., Peng, R., Fan, X., Du, J., Zhang, J. and Hao, Y., "Enhanced P-Type GaN Conductivity by Mg Delta Doped AlGaN/GaN Superlattice Structure," Materials, 14(1), 144-150(2021).