DOI QR코드

DOI QR Code

GEOMETRIC PROPERTIES ON (j, k)-SYMMETRIC FUNCTIONS RELATED TO STARLIKE AND CONVEX FUNCTION

  • 투고 : 2021.02.25
  • 심사 : 2021.04.15
  • 발행 : 2022.04.30

초록

For j = 0, 1, 2,…, k - 1; k ≥ 2; and - 1 ≤ B < A ≤ 1, we have introduced the functions classes denoted by ST[j,k](A, B) and K[j,k](A, B), respectively, called the generalized (j, k)-symmetric starlike and convex functions. We first proved the sharp bounds on |f(z)| and |f'(z)|. Various radii related problems, such as radius of (j, k)-symmetric starlikeness, convexity, strongly starlikeness and parabolic starlikeness are determined. The quantity |a23 - a5|, which provide the initial bound on Zalcman functional is obtained for the functions in the family ST[j,k]. Furthermore, the sharp pre-Schwarzian norm is also established for the case when f is a member of K[j,k](α) for all 0 ≤ α < 1.

키워드

과제정보

The present work of the first author is supported by OSHEC, Government of Odisha, India. The second author acknowledges the support from INSPIRE Fellowship, DST, Government of India.

참고문헌

  1. R. Aghalary and Z. Orouji, Norm estimates of the pre-Schwarzian derivatives for α-spiral-like functions of order ρ, Complex Anal. Oper. Theory 8 (2014), no. 4, 791-801. https://doi.org/10.1007/s11785-013-0288-4
  2. M. F. Ali and A. Vasudevarao, Integral means and Dirichlet integral for certain classes of analytic functions, J. Aust. Math. Soc. 99 (2015), no. 3, 315-333. https://doi.org/10.1017/S1446788715000154
  3. V. V. Anh, k-fold symmetric starlike univalent functions, Bull. Austral. Math. Soc. 32 (1985), no. 3, 419-436. https://doi.org/10.1017/S0004972700002537
  4. J. Becker, Lownersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23-43. https://doi.org/10.1515/crll.1972.255.23
  5. J. E. Brown and A. Tsao, On the Zalcman conjecture for starlike and typically real functions, Math. Z. 191 (1986), no. 3, 467-474. https://doi.org/10.1007/BF01162720
  6. A. Gangadharan, V. Ravichandran, and T. N. Shanmugam, Radii of convexity and strong starlikeness for some classes of analytic functions, J. Math. Anal. Appl. 211 (1997), no. 1, 301-313. https://doi.org/10.1006/jmaa.1997.5463
  7. I. Graham and D. Varolin, Bloch constants in one and several variables, Pacific J. Math. 174 (1996), no. 2, 347-357. http://projecteuclid.org/euclid.pjm/1102365175 https://doi.org/10.2140/pjm.1996.174.347
  8. W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. 28 (1973), 297-326. https://doi.org/10.4064/ap-28-3-297-326
  9. O. Lehto, Univalent functions and Teichmuller spaces, Graduate Texts in Mathematics, 109, Springer-Verlag, New York, 1987. https://doi.org/10.1007/978-1-4613-8652-0
  10. L. Li and S. Ponnusamy, On the generalized Zalcman functional λa2n - a2n-1 in the close-to-convex family, Proc. Amer. Math. Soc. 145 (2017), no. 2, 833-846. https://doi.org/10.1090/proc/13260
  11. P. Liczberski and J. Polubinski, On (j, k)-symmetrical functions, Math. Bohem. 120 (1995), no. 1, 13-28. https://doi.org/10.21136/mb.1995.125897
  12. S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.
  13. R. Nevanlinna, Uber die konforme Abbbildung von Sterngebieten, Ofvers. Finska Vetensk. Soc. Forh, 63 A, (1921), 1-21.
  14. V. Ravichandran and S. Verma, Generalized Zalcman conjecture for some classes of analytic functions, J. Math. Anal. Appl. 450 (2017), no. 1, 592-605. https://doi.org/10.1016/j.jmaa.2017.01.053
  15. M. S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37 (1936), no. 2, 374-408. https://doi.org/10.2307/1968451
  16. K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75. https://doi.org/10.2969/jmsj/01110072
  17. F. Al Sarari and S. Latha, A few results on functions that are Janowski starlike related to (j, k)-symmetric points, Octo. Math. Maga. 21 (2013), no. 2, 556-563.
  18. F. Al Sarari, S. Latha, and B. A. Frasin, Convex and starlike functions with respect to (j, k)-symmetric points, Appl. Math. E-Notes 17 (2017), 10-18.
  19. R. Singh, On a class of star-like functions, J. Indian Math. Soc. (N.S.) 32 (1968), 207-213.
  20. L. Spacek, Contribution a la theorie des fonctions univalentes, Casopis Pest. Mat. Fys. 62 (1933), 12-19. https://doi.org/10.21136/CPMF.1933.121951
  21. A. Vasudevarao and A. Pandey, The Zalcman conjecture for certain analytic and univalent functions, J. Math. Anal. Appl. 492 (2020), no. 2, 124466. https://doi.org/10.1016/j.jmaa.2020.124466
  22. H. Waadeland, Uber k-fach symmetrische, sternformige schlichte Abbildungen des Einheitskreises, Math. Scand. 3 (1955), 150-154. https://doi.org/10.7146/math.scand.a10435
  23. S. Yamashita, The Pick version of the Schwarz lemma and comparison of the Poincare densities, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), no. 2, 291-322.
  24. S. Yamashita, Norm estimates for function starlike or convex of order alpha, Hokkaido Math. J. 28 (1999), no. 1, 217-230. https://doi.org/10.14492/hokmj/1351001086
  25. I. V. Zhuravlev, A model of the universal Teichmuller space, Sibirsk. Mat. Zh. 27 (1986), no. 5, 75-82, 205.