과제정보
The present work of the first author is supported by OSHEC, Government of Odisha, India. The second author acknowledges the support from INSPIRE Fellowship, DST, Government of India.
참고문헌
- R. Aghalary and Z. Orouji, Norm estimates of the pre-Schwarzian derivatives for α-spiral-like functions of order ρ, Complex Anal. Oper. Theory 8 (2014), no. 4, 791-801. https://doi.org/10.1007/s11785-013-0288-4
- M. F. Ali and A. Vasudevarao, Integral means and Dirichlet integral for certain classes of analytic functions, J. Aust. Math. Soc. 99 (2015), no. 3, 315-333. https://doi.org/10.1017/S1446788715000154
- V. V. Anh, k-fold symmetric starlike univalent functions, Bull. Austral. Math. Soc. 32 (1985), no. 3, 419-436. https://doi.org/10.1017/S0004972700002537
- J. Becker, Lownersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23-43. https://doi.org/10.1515/crll.1972.255.23
- J. E. Brown and A. Tsao, On the Zalcman conjecture for starlike and typically real functions, Math. Z. 191 (1986), no. 3, 467-474. https://doi.org/10.1007/BF01162720
- A. Gangadharan, V. Ravichandran, and T. N. Shanmugam, Radii of convexity and strong starlikeness for some classes of analytic functions, J. Math. Anal. Appl. 211 (1997), no. 1, 301-313. https://doi.org/10.1006/jmaa.1997.5463
- I. Graham and D. Varolin, Bloch constants in one and several variables, Pacific J. Math. 174 (1996), no. 2, 347-357. http://projecteuclid.org/euclid.pjm/1102365175 https://doi.org/10.2140/pjm.1996.174.347
- W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. 28 (1973), 297-326. https://doi.org/10.4064/ap-28-3-297-326
- O. Lehto, Univalent functions and Teichmuller spaces, Graduate Texts in Mathematics, 109, Springer-Verlag, New York, 1987. https://doi.org/10.1007/978-1-4613-8652-0
- L. Li and S. Ponnusamy, On the generalized Zalcman functional λa2n - a2n-1 in the close-to-convex family, Proc. Amer. Math. Soc. 145 (2017), no. 2, 833-846. https://doi.org/10.1090/proc/13260
- P. Liczberski and J. Polubinski, On (j, k)-symmetrical functions, Math. Bohem. 120 (1995), no. 1, 13-28. https://doi.org/10.21136/mb.1995.125897
- S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.
- R. Nevanlinna, Uber die konforme Abbbildung von Sterngebieten, Ofvers. Finska Vetensk. Soc. Forh, 63 A, (1921), 1-21.
- V. Ravichandran and S. Verma, Generalized Zalcman conjecture for some classes of analytic functions, J. Math. Anal. Appl. 450 (2017), no. 1, 592-605. https://doi.org/10.1016/j.jmaa.2017.01.053
- M. S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37 (1936), no. 2, 374-408. https://doi.org/10.2307/1968451
- K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75. https://doi.org/10.2969/jmsj/01110072
- F. Al Sarari and S. Latha, A few results on functions that are Janowski starlike related to (j, k)-symmetric points, Octo. Math. Maga. 21 (2013), no. 2, 556-563.
- F. Al Sarari, S. Latha, and B. A. Frasin, Convex and starlike functions with respect to (j, k)-symmetric points, Appl. Math. E-Notes 17 (2017), 10-18.
- R. Singh, On a class of star-like functions, J. Indian Math. Soc. (N.S.) 32 (1968), 207-213.
- L. Spacek, Contribution a la theorie des fonctions univalentes, Casopis Pest. Mat. Fys. 62 (1933), 12-19. https://doi.org/10.21136/CPMF.1933.121951
- A. Vasudevarao and A. Pandey, The Zalcman conjecture for certain analytic and univalent functions, J. Math. Anal. Appl. 492 (2020), no. 2, 124466. https://doi.org/10.1016/j.jmaa.2020.124466
- H. Waadeland, Uber k-fach symmetrische, sternformige schlichte Abbildungen des Einheitskreises, Math. Scand. 3 (1955), 150-154. https://doi.org/10.7146/math.scand.a10435
- S. Yamashita, The Pick version of the Schwarz lemma and comparison of the Poincare densities, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), no. 2, 291-322.
- S. Yamashita, Norm estimates for function starlike or convex of order alpha, Hokkaido Math. J. 28 (1999), no. 1, 217-230. https://doi.org/10.14492/hokmj/1351001086
- I. V. Zhuravlev, A model of the universal Teichmuller space, Sibirsk. Mat. Zh. 27 (1986), no. 5, 75-82, 205.