DOI QR코드

DOI QR Code

TIME-FREQUENCY ANALYSIS ASSOCIATED WITH K-HANKEL-WIGNER TRANSFORMS

  • Boubatra, Mohamed Amine (Laboratoire d'Analyse Mathematique et Applications LR11ES11 Faculte des Sciences de Tunis Universite Tunis El Manar)
  • Received : 2021.04.09
  • Accepted : 2021.07.12
  • Published : 2022.04.30

Abstract

In this paper, we introduce the k-Hankel-Wigner transform on R in some problems of time-frequency analysis. As a first point, we present some harmonic analysis results such as Plancherel's, Parseval's and an inversion formulas for this transform. Next, we prove a Heisenberg's uncertainty principle and a Calderón's reproducing formula for this transform. We conclude this paper by studying an extremal function for this transform.

Keywords

Acknowledgement

The author thanks the reviewer for the careful reading and the valuable suggestions.

References

  1. S. Ben Said, Strichartz estimates for Schrodinger-Laguerre operators, Semigroup Forum 90 (2015), no. 1, 251-269. https://doi.org/10.1007/s00233-014-9617-9
  2. S. Ben Said, A product formula and a convolution structure for a k-Hankel transform on R, J. Math. Anal. Appl. 463 (2018), no. 2, 1132-1146. https://doi.org/10.1016/j.jmaa.2018.03.073
  3. S. Ben Said, M. A. Boubatra, and M. Sifi, On the deformed Besov-Hankel spaces, Opuscula Math. 40 (2020), no. 2, 171-207. https://doi.org/10.7494/opmath.2020.40.2.171
  4. S. Ben Said and L. Deleaval, A Hardy-Littlewood maximal operator for the generalized Fourier transform on R, J. Geom. Anal. 30 (2020), no. 2, 2273-2289. https://doi.org/10.1007/s12220-019-00183-6
  5. S. Ben Said, T. Kobayashi, and B. Orsted, Laguerre semigroup and Dunkl operators, Compos. Math. 148 (2012), no. 4, 1265-1336. https://doi.org/10.1112/S0010437X11007445
  6. A. Bonami, B. Demange, and P. Jaming, Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Mat. Iberoam. 19 (2003), no. 1, 23-55. https://doi.org/10.4171/RMI/337
  7. D. Constales, H. De Bie, and P. Lian, Explicit formulas for the Dunkl dihedral kernel and the (κ, a)-generalized Fourier kernel, J. Math. Anal. Appl. 460 (2018), no. 2, 900-926. https://doi.org/10.1016/j.jmaa.2017.12.018
  8. H. De Bie, B. Orsted, P. Somberg, and V. Soucek, Dunkl operators and a family of realizations of osp(1|2), Trans. Amer. Math. Soc. 364 (2012), no. 7, 3875-3902. https://doi.org/10.1090/S0002-9947-2012-05608-X
  9. H. De Bie, R. Oste, and J. Van der Jeugt, Generalized Fourier transforms arising from the enveloping algebras of (2) and osp(1|2), Int. Math. Res. Not. IMRN 2016, no. 15, 4649-4705. https://doi.org/10.1093/imrn/rnv293
  10. B. Demange, Uncertainty principles for the ambiguity function, J. Lond. Math. Soc. (2) 72 (2005), no. 3, 717-730. https://doi.org/10.1112/S0024610705006903
  11. C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167-183. https://doi.org/10.2307/2001022
  12. C. F. Dunkl, Hankel transforms associated to finite reflection groups, in Hypergeometric functions on domains of positivity, Jack polynomials, and applications (Tampa, FL, 1991), 123-138, Contemp. Math., 138, Providence, RI, 1992. https://doi.org/10.1090/conm/138/1199124
  13. C. Fernandez, A. Galbis, and J. Martinez, Localization operators and an uncertainty principle for the discrete short time Fourier transform, Abstr. Appl. Anal. 2014 (2014), Art. ID 131459, 6 pp. https://doi.org/10.1155/2014/131459
  14. S. Ghobber and P. Jaming, Uncertainty principles for integral operators, Studia Math. 220 (2014), no. 3, 197-220. https://doi.org/10.4064/sm220-3-1
  15. D. V. Gorbachev, V. I. Ivanov, and S. Yu. Tikhonov, Pitt's inequalities and uncertainty principle for generalized Fourier transform, Int. Math. Res. Not. IMRN 2016, no. 23, 7179-7200. https://doi.org/10.1093/imrn/rnv398
  16. K. Grochenig, Uncertainty principles for time-frequency representations, in Advances in Gabor analysis, 11-30, Appl. Numer. Harmon. Anal, Birkhauser Boston, Boston, MA, 2003. https://doi.org/10.1007/978-1-4612-0133-5_2
  17. T. R. Johansen, Weighted inequalities and uncertainty principles for the (k, a)-generalized Fourier transform, Internat. J. Math. 27 (2016), no. 3, 1650019, 44 pp. https://doi.org/10.1142/S0129167X16500191
  18. G. Kimeldorf and G. Wahba, Some results on Tchebycheffian spline functions, J. Math. Anal. Appl. 33 (1971), 82-95. https://doi.org/10.1016/0022-247X(71)90184-3
  19. T. Matsuura, S. Saitoh, and D. D. Trong, Approximate and analytical inversion formulas in heat conduction on multidimensional spaces, J. Inverse Ill-Posed Probl. 13 (2005), no. 3-6, 479-493. https://doi.org/10.1163/156939405775297452
  20. H. Mejjaoli, Spectral theorems associated with the (k, a)-generalized wavelet multipliers, J. Pseudo-Differ. Oper. Appl. 9 (2018), no. 4, 735-762. https://doi.org/10.1007/s11868-018-0260-1
  21. H. Mejjaoli and K. Trimeche, k-Hankel two-wavelet theory and localization operators, Integral Transforms Spec. Funct. 31 (2020), no. 8, 620-644. https://doi.org/10.1080/10652469.2020.1723011
  22. S. Saitoh, The Weierstrass transform and an isometry in the heat equation, Appl. Anal. 16 (1983), no. 1, 1-6. https://doi.org/10.1080/00036818308839454
  23. S. Saitoh, Approximate real inversion formulas of the Gaussian convolution, Appl. Anal. 83 (2004), no. 7, 727-733. https://doi.org/10.1080/00036810410001657198
  24. S. Saitoh, Best approximation, Tikhonov regularization and reproducing kernels, Kodai Math. J. 28 (2005), no. 2, 359-367. https://doi.org/10.2996/kmj/1123767016
  25. F. Soltani, The Dunkl-Wigner transforms on the real line, J. Nonlinear Funct. Anal. 2017 (2017), Article ID 24, 1-15. https://doi.org/10.23952/jnfa.2017.24