
Commun. Korean Math. Soc. 37 (2022), No. 2, pp. 521–535

https://doi.org/10.4134/CKMS.c210119

pISSN: 1225-1763 / eISSN: 2234-3024

TIME-FREQUENCY ANALYSIS ASSOCIATED WITH

K-HANKEL-WIGNER TRANSFORMS

Mohamed Amine Boubatra

Abstract. In this paper, we introduce the k-Hankel-Wigner transform

on R in some problems of time-frequency analysis. As a first point, we
present some harmonic analysis results such as Plancherel’s, Parseval’s

and an inversion formulas for this transform. Next, we prove a Heisen-
berg’s uncertainty principle and a Calderón’s reproducing formula for this

transform. We conclude this paper by studying an extremal function for

this transform.

1. Introduction

Dunkl’s theory is a far reaching generalization of Fourier analysis and spe-
cial function theory related to root systems and where the Lebesgue measure
is replaced by a weighted measure invariant under the refection group and
parameterized by a multiplicity function k.

A deformation of Dunkl’s theory has recently investigated by Ben Said et
al. (see [5]) by a parameter a > 0 which arises from the “interpolation” of two
different reductive Lie groups actions on the Weil representation of the meta-
plectic group Mp(n;R) and the minimal unitary representation of the conformal
group O(n+ 1; 2) and a parameter k arises form Dunkl’s theory of differential
difference operators [11], namely the (k, a)-generalized Fourier transform Fk,a.
Various known integral transforms are covered by Fk,a; the Fourier transform
(k = 0 and a = 2), the Dunkl transform [12] (k > 0 and a = 2) and a new
unitary operator [2] Fk = Fk,1 (k > 0 and a = 1) having a rich structure, as
much as the Dunkl transform, which we call it the k-Hankel transform.

In the theory of harmonic analysis, time-frequency transforms and theirs
properties such as orthogonal relations, inversion formulas and Heisenberg’s
uncertainty principle are of great interest in the last years.

Received April 9, 2021; Revised July 3, 2021; Accepted July 12, 2021.
2010 Mathematics Subject Classification. Primary 42B10, 44A20, 46F12.
Key words and phrases. k-Hankel transform, k-Hankel-Wigner transform, Plancherel’s

formula, Heisenberg’s uncertainty principle, Calderón’s reproducing formula, extremal

function.

c©2022 Korean Mathematical Society

521



522 M. A. BOUBATRA

Fourier analysis has been applied to many other physical problems. One of
the causes of the success of this formalism is that it constitutes a mathemat-
ical tool which describes in a fairly natural way many physical situations. As
examples, thermal radiation, radio transmissions, x-rays and color rays of the
visible spectrum.

However, even if no one will question the usefulness of the Fourier transform
as well as its efficiency of implantation, in reality one meets many signals that
the Fourier transform describes rather badly. These are in particular so-called
non-stationary signals, the frequency of which depends on time. It was therefore
necessary to develop new mathematical tools making it possible to process such
signals and easily extract useful information.

The time-frequency resolution is associated with the Fourier-Wigner trans-
form also known as Gabor transform, or the short-time Fourier transform.
Recently, a considerable attention has been made to develop a new character-
ization of the uncertainty principle for the Fourier-Wigner transform, see for
examples ([6, 10, 16]) and the references therein. The most famous of them is
the sharp Heisenberg-type uncertainty inequality (see [6], Theorem 5.1). An
analogue fundamental tool in time-frequency analysis in our paper is the k-
Hankel-Wigner transform.

Several results of uncertainty principles have already been proved for the
generalized Fourier transform Fk,a, associated to a Dunkl-type operator by H.
Mejjaoli in [20] and by Gorbachev et al. in [15] for the radially generalized
Fourier transform Fk,a. Motivated by the previous works such as the work of
F. Soltani on which he studied the Wigner transform for the Dunkl transform
on the real line (see, e.g; [25]). In our paper we will give a new approach of
this transform by studying the Wigner transform for the k-Hankel transform
denoted by Vg. Note that the k-Hankel transform has a rich structure, as much
as the Dunkl transform, and recently has been gaining a lot of attention (see,
e.g., [1–5,7–9,15,17,20,21]).

Let us define the measure

(1) dµk(t) =
1

2Γ(2k)
|t|2k−1dt.

Let g ∈ L2(R, µk). The k-Hankel-Wigner transform Vg is the mapping
defined for f ∈ L2(R, µk) by

Vg(f)(x, y) =

∫
R
f(t)τkx gk,y(t)dµk(t),

where

gk,y(z) = Fk
(√

τky |Fk(g)|2
)

(z).

This paper has been divided into four parts. In the second part of this paper,
we provide some background materials associated with the k-Hankel transform.
The third part deals with the study of the k-Hankel-Wigner transforms Vg for
which we give a Heisenberg uncertainty principle and a Calderón’s reproducing
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formula for this transform. The last part is reserved to study the extremal
function of the problem

(2) inf
f∈Hs(R,µk)

{η‖f‖2Hs(R,µk) + ‖h− Vg(f)‖2L2(R2,νk)
},

where νk = µk ⊗ µk.
For an unknown function f, here h ∈ L2(R2, νk) is a given function and

η > 0, s > k, and Hs(R, µk) is the k-Sobolev-Hankel space of fractional order
s. We show an analysis of the minimizer f∗η,h of problem (2). More precisely
we characterize this minimizer by integral representations associated to the
theory of the k-Hankel transform; and we study the convergence rates of these
representations.

The problem (2) reduces to the Tikhonov regularization problem

inf
f∈Hs(R,µk)

{‖h− Vg(f)‖2L2(R2,νk)
} when η → 0.

2. Background for the k-Hankel transform

In this section, we provide some background materials associated with k-
Hankel transform that we need thereafter.

For k ≥ 1
2 and 1 ≤ p ≤ ∞, let Lp(R, µk) to be the space of measurable

functions f on R such that

‖f‖Lp(R,µk) =

(∫
R
|f(x)|pdµk(x)

) 1
p

for 1 ≤ p <∞,

‖f‖L∞(R,µk) = ess sup
x∈R

|f(x)| <∞,

where dµk is the measure defined by (1).
For p = 2, we provide this space with the scalar product

〈f, g〉L2(R,µk) :=

∫
R
f(x)g(x)dµk(x).

The k-Hankel transform of f ∈ L1(R, µk) is defined by

(3) Fk(f)(λ) =

∫
R
f(x)Bk(λ, x)dµk(x), λ ∈ R,

where Bk(λ, x) is the k-Hankel kernel given by

Bk(λ, x) = 2k−1(2
√
|λx|)− λx

2k(2k + 1)
2k+1(2

√
|λx|).

Here

α(u) = Γ(α+ 1)
(u

2

)−α
Jα(u) = Γ(α+ 1)

∞∑
m=0

(−1)m

m!Γ(α+m+ 1)

(u
2

)2m
,

denotes the normalized Bessel function of index α.
The definition (3) makes sense as

(4) |Bk(x, y)| ≤ 1.
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For all x, y ∈ R, and f ∈ L1(R, µk),

‖Fkf‖L∞(R,µk) ≤ ‖f‖L1(R,µk).

Theorem 2.1 (See [5]). Assume that k ≥ 1
2 .

(i) (Plancherel’s theorem) Fk is an isometric isomorphism on L2(R, µk)∫
R
|f(x)|2dµk(x) =

∫
R
|Fk(f)(λ)|2dµk(λ).

(ii) (Parseval’s formula) For all f, g ∈ L2(R, µk), we have∫
R
f(x)g(x)dµk(x) =

∫
R
Fk(f)(λ)Fk(g)(λ)dµk(λ).

(iii) (Inversion formula) Fk satisfies

F−1k = Fk.

For f ∈ L2(R, µk) and x, y ∈ R we have

(5) Fk(τkx f)(y) = Bk(x, y)Fk(f)(y).

By means of k-Hankel transform we can define the translation operator on the
space Lp(R, µk), 1 ≤ p ≤ ∞, by the following theorem.

Theorem 2.2 (See [2]). For λ, x, y ∈ R, we have

τkx f(y) =

∫
R
f(z) dσkx,y(z),

where

dσkx,y(z) =

 Kk(x, y, z)dµk(z) if xy 6= 0,
dδx(z) if y = 0,
dδy(z) if x = 0.

For more details about the generalized translation operator τk(.) we refer the

reader to [2].
We recall some properties that concern the translation operator in the fol-

lowing proposition, (see [2]).
Let Lpe(R, µk) to be the space of even functions in Lp(R, µk).

Proposition 2.3.

(i) For all nonnegative function f ∈ L1
e(R, µk), for all x ∈ R we have

τkx f ≥ 0, τkx f ∈ L1(R, µk)

and

(6)

∫
R
τkx f(y)dµk(y) =

∫
R
f(y)dµk(y).

(ii) For all f in Lpe(R, µk), 1 ≤ p ≤ ∞, there exists a positive constant Ak
such that

(7) ‖τkx f‖Lp(R,µk) ≤ Ak‖f‖Lp(R,µk) for all x ∈ R.
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According to the translation operator, we can define the convolution product
∗k as (see [2]):

Definition. For f, g ∈ L1(R, µk), we define the generalized convolution prod-
uct ∗k, by

f ∗k g(x) =

∫
R
f(y)τkx g(y)dµk(y), x ∈ R.

In particular

f ∗k g = g ∗k f and (f ∗k g) ∗k h = f ∗k (g ∗k h).

Proposition 2.4 ([2]). The following statements hold true.

(i) Let f ∈ L2(R, µk) and g ∈ L1(R, µk). Then the relation convolution
f ∗k g is defined almost everywhere on R by

f ∗k g(y) =

∫
R
f(x)τky g(x)dµk(x), y ∈ R.

Moreover, the function f ∗k g belongs to L2(R, µk).
(ii) (Young’s inequality) For p, q, r such that 1 ≤ p, q, r ≤ ∞ and 1

p+ 1
q−1 =

1
r , and for f ∈ Lp(R, µk) and g ∈ Lq(R, µk), the convolution product
f ∗k g is a well defined element in Lr(R, µk) and

‖f ∗k g‖Lr(R,µk) ≤ Ak‖f‖Lp(R,µk)‖g‖Lq(R,µk),

where Ak is the same constant as in (ii) of Proposition 2.3.
(iii) For f ∈ L2(R, µk) and g ∈ L1(R, µk), we have

Fk(f ∗k g) = Fk(f)Fk(g).

As a consequence of the Plancherel theorem and the last equality is the following
relation

(8)

∫
R
|f ∗k g(x)|2dµk(x) =

∫
R
|Fkf(λ)|2|Fkg(λ)|2dµk(λ), x ∈ R,

where both sides are finite.

3. k-Hankel-Wigner transforms

In this section, we define and study the k-Hankel-Wigner transforms, then
we give a Plancherel’s and an inversion formulas for it. Moreover, we study a
Heisenberg’s uncertainty principle and a Calderón’s reproducing formula asso-
ciated with Vg.

Let g ∈ L2(R, µk) and y ∈ R. The modulation of g by y is the function gk,y
defined by

(9) gk,y(z) = Fk
(√

τky |Fk(g)|2
)

(z), z ∈ R.

Thus,

(10) ‖gk,y‖L2(R,µk) = ‖g‖L2(R,µk).
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Furthermore, we have

(11) Fk(gk,y)(z) = Fk(gk,y)(z) =
√
τky |Fk(g)|2(z).

For x, y ∈ R, we consider the family mk,y,x defined by

mk,y,x(t) = τkx gk,y(t), t ∈ R.
By using relations (7) and (10) we obtain

(12) ‖mk,y,x‖L2(R,µk) ≤ Ak‖g‖L2(R,µk).

Let g ∈ L2(R, µk). The k-Hankel-Wigner transform denoted by Vg is defined
for f ∈ L2(R, µk) and x, y ∈ R by

(13) Vg(f)(x, y) =

∫
R
f(t)mk,y,x(t)dµk(t).

(13) can be written as

(14) Vg(f)(x, y) = gk,y ∗k f(x),

where gk,y is the function given by (9).

Proposition 3.1. Let (f, g) ∈ L2(R, µk) × L2(R, µk). Then we have the fol-
lowings.

(i) Vg(f)(x, y) =

∫
R
Bk(x, z)Fk(f)(z)

√
τky |Fk(g)|2(z)dµk(z).

(ii) The function Vg(f) belongs to L∞(R2, νk), and

‖Vg(f)‖L∞(R2,νk) ≤ Ak‖f‖L2(R,µk)‖g‖L2(R,µk).

Proof. (i) By (ii) of Theorem 2.1 and relation (5) we have

Vg(f)(x, y) =

∫
R
Bk(x, z)Fk(f)(z)Fk(gk,y)(z)dµk(z),

then, by (11) we infer the result.
The assertion (ii) follows immediately from Hölder’s inequality, and relations

(13) and (12), which furnishes the proposition. �

Theorem 3.2. Let g ∈ L2(R, µk).

(i) (Plancherel’s formula): For every f ∈ L2(R, µk), we have

‖Vg(f)‖L2(R2,νk) = ‖g‖L2(R,µk)‖f‖L2(R,µk).

(ii) (Parseval’s formula): For every f, h ∈ L2(R, µk), we have∫
R2

Vg(f)(x, y)Vg(h)(x, y)dνk(x, y) = ‖g‖2L2(R,µk)

∫
R
f(x)h(x)dµk(x).

(iii) (Inversion formula): For all f ∈ L1 ∩ L2(R, µk) such that Fk(f) ∈
L1(R, µk), we have

f(z) =
1

‖g‖2L2(R,µk)

∫
R

∫
R
Vg(f)(x, y)mk,y,z(x)dµk(x)dµk(y).
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Proof. (i) By (i) of Theorem 2.1, relations (6), (8) and (14), we obtain∫
R

∫
R
|Vg(f)(x, y)|2dµk(x)dµk(y)

=

∫
R

∫
R
|gk,y ∗k f(x)|2dµk(x)dµk(y)

=

∫
R

∫
R
|Fk(gk,y)(z)|2|Fk(f)(z)|2dµk(z)dµk(y)

=

∫
R

∫
R
τky |Fk(g)|2(z)|Fk(f)(z)|2dµk(z)dµk(y)

= ‖g‖2L2(R,µk)

∫
R
|Fk(f)(z)|2dµk(z).

(ii) According the assertions (i) and (ii) of Theorem 2.1 we obtain,∫
R

∫
R
Vg(f)(x, y)Vg(h)(x, y)dµk(x)dµk(y)

= ‖g‖2L2(R,µk)

∫
R
Fk(f)(z)Fk(h)(z)dµk(z)

= ‖g‖2L2(R,µk)

∫
R
f(x)h(x)dµk(x).

(iii) By relation (8), and (iii) of Proposition 2.4, one can assert that∫
R

∫
R
Vg(f)(x, y)mk,y,z(x)dµk(x)dµk(y)

=

∫
R

∫
R
τky |Fk(g)|2(t)Fk(f)(t)Bk(z, t)dµk(t)dµk(y).

Then, by Fubini’s theorem, (i) of Theorem 2.1 and relation (6), we obtain∫
R

∫
R
Vg(f)(x, y)mk,y,z(x)dµk(x)dµk(y)

= ‖g‖2L2(R,µk)

∫
R
Fk(f)(t)Bk(z, t)dµk(t)

= ‖g‖2L2(R,µk)f(z),

which furnishes the theorem. �

Remark. For T > 0, we define the dilation operator of f ∈ L2(R, µk) by

fT (x) = T−2kf
( x
T

)
, x ∈ R.

Then

(15)
Fk(fT )(z) = T 2kFk(f)(Tz),

τkx (fT )(y) = T−2kτkx
T
f
( y
T

)
.
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Lemma 3.3. Let T > 0 and let g ∈ L2(R, µk), g 6= 0. Then, for f ∈ L2(R, µk),
one has

VgT (fT )(x, y) = Vg(f)
( x

T 4
, T y

)
, x, y ∈ R.

Proof. From (i) of Proposition 3.1, we have

VgT (fT )(x, y) =

∫
R
B(x, z)Fk(fT )(z)

√
τky |Fk(gT )|2(z)dµk(z).

Using (15), we get

τky |Fk(gT )|2(z) = T 4kτkTy |Fk(g)|2(Tz).

Then, by a change of variable we obtain

VgT (fT )(x, y) = T 4k

∫
R
Bk(x, z)Fk(f)(Tz)

√
τkTy|Fk(g)|2(Tz)dµk(z)

=

∫
R
Bk(x,

z

T 4
)Fk(f)(z)

√
τkTy|Fk(g)|2(z)dµk(z)

= Vg(f)
( x

T 4
, T y

)
,

which furnishes the lemma. �

Let us recall the Heisenberg uncertainty principle for the k-Hankel transform.

Proposition 3.4 (see [5,13,14]). For s, a > 0, there exists a positive constant
c(s, a) such that for every f ∈ L2(R, µk), the following inequality holds

‖|ξ|sFk(f)(ξ)‖
a
s+a

L2(R,µk)‖|x|
af(x)‖

s
s+a

L2(R,µk) ≥ c(s, a)‖f‖L2(R,µk).

Theorem 3.5 (Heisenberg-type uncertainty principle for Vg). Let s, a > 0.
Then there exists a constant c(s, a) > 0 such that, for all f ∈ L2(R, µk),
g ∈ L2(R, µk), we have

(16)

(∫
R2

|x|2a|Vg(f)(x, y)|2dνk(x, y)

) s
s+a
(∫

R
|ξ|2s|Fk(f)(ξ)|2dµk(ξ)

) a
s+a

≥ c2(s, a)‖f‖2L2(R,µk)‖g‖
2s
s+a

L2(R,µk).

The constant c(s, a) is the same constant as in Proposition 3.4.

Proof. We consider the non-trivial case where both integrals on the left hand
side of (16) are finite. Fix y arbitrary, Proposition 3.4 gives(∫

R
|ξ|2s|Fk(Vg(f)(·, y))(ξ)|2dµk(ξ)

) s
s+a
(∫

R
|x|2a|Vg(f)(x, y)|2dµk(ξ)

) s
s+a

≥ c2(s, a)

∫
R
|Vg(f)(x, y)|2dµk(ξ).
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We integrate both sides over y with respect to the measure dµk(y), and using
Hölder’s inequality, we obtain(∫

R2

|ξ|2s|Fk(Vg(f)(·, y))(ξ)|2dνk(ξ, y)

) s
s+a
(∫

R2

|x|2a|Vg(f)(x, y)|2dνk(x, y)

) s
s+a

≥ c2(s, a)

∫
R2

|Vg(f)(x, y)|2dνk(x, y).

Moreover, by using the fact that∫
R2

|ξ|2s|Fk(Vg(f)(·, y))(ξ)|2dνk(ξ, y) = ‖g‖2L2(R,µk)

∫
R
|ξ|2s|Fk(f)(ξ)|2dµk(ξ),

we deduce

‖g‖
2a
s+a

L2(R,µk)

(∫
R
|ξ|2s|Fk(f)(ξ)|2dµk(ξ)

) a
s+a
(∫

R2

|x|2a|Vg(f)(x, y)|2dνk(x, y)

) s
s+a

≥ c2(s, a)

∫
R2

|Vg(f)(x, y)|2dνk(x, y)

= c2(s, a)‖f‖2L2(R,µk)‖g‖
2
L2(R,µk),

which furnishes the proof of the theorem. �

Now, we’re in position to give our main result of this section which is repre-
sented by the following reproducing formula of Calderón’s type for Vg.

Theorem 3.6 (Calderón’s reproducing formula for Vg). Let a, b ∈ R such that
a < b and let g ∈ L2(R, µk), g 6= 0 such that Fk(g) ∈ L∞(R, µk). Then, for
f ∈ L2(R, µk), the following function

fa,b(z) =
1

‖g‖L2(R,µk)

∫ b

a

∫
R
Vg(f)(x, y)mk,y,z(x)dµk(x)dµk(y)

belongs to L2(R, µk) and satisfies

(17) lim
a→−∞
b→+∞

‖fa,b − f‖L2(R,µk) = 0.

Proof. According to (i) of Theorem 2.1, relations (8) and (14), we have

fa,b(z) =
1

‖g‖2L2(R,µk)

∫
a,b

∫
R
τky |Fk(g)|2(t)Fk(f)(t)Bk(z, t)dµk(t)dµk(y).

By Fubini’s theorem, we get

(18) fa,b(z) =

∫
R
Ka,b(t)Fk(f)(t)Bk(z, t)dµk(t),

where

Ka,b(t) =
1

‖g‖2L2(R,µk)

∫ b

a

τky |Fk(g)|2(t)dµk(y).
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By using relation (7), we can assert that ‖Ka,b‖L∞(R,µk) ≤ Ak. On the other
hand, by Hölder’s inequality, we deduce that

|Ka,b(t)|2 ≤
µk(a, b)

‖g‖4L2(R,µk)

∫ b

a

|τky |Fk(g)|2(t)|2dµk(y).

Hence, by relation (7) we find

‖Ka,b‖2L2(R,µk) ≤
(µk(a, b))2A2

k

‖g‖4L2(R,µk)

∫
R
|Fk(g)(t)|4dµk(t)

≤
(µk(a, b))2A2

k‖Fk(g)‖2L∞(R,µk)

‖g‖2L2(R,µk)
.

Thus Ka,b ∈ L∞ ∩ L2(R, µk).
And by (18), we obtain

Fk(fa,b)(t) = Ka,b(t)Fk(f)(t).

According the last equality and (i) of Theorem 2.1, it follows that fa,b ∈
L2(R, µk) and

‖fa,b − f‖2L2(R,µk) =

∫
R
|Fk(f)(t)|2(1−Ka,b(t))

2dµk(t).

By relation (6), we have

lim
a→−∞
b→+∞

Ka,b(t) = 1 for all t ∈ R,

and

|Fk(f)(t)|2(1−Ka,b(t))
2 ≤ (Ak + 1)2|Fk(f)(t)|2 for all t ∈ R.

The dominated convergence theorem ensure the relation (17), which furnishes
the theorem. �

4. Extremal functions for the k-Hankel-Wigner transform

In this section, by using the theory associated with the k-Hankel transform
and the ideas of Saitoh ([22–24]), we study the extremal function of the problem
(2).

Let s ≥ 0. We define the k-Sobolev-Hankel space of order s, that will be
denoted Hs(R, µk), as the set of all f ∈ L2(R, µk) such that (1+ |z|)s/2Fk(f) ∈
L2(R, µk). The space Hs(R, µk) equipped with the inner product on the space
Hs(R, µk)

〈f, g〉Hs(R,µk) =

∫
R

(1 + |z|)sFk(f)(z)Fk(g)(z)dµk(z),

and the norm

‖f‖Hs(R,µk) =

[∫
R
(1 + |z|)s|Fk(f)(z)|2dµk(z)

]1/2
.



TFA ASSOCIATED WITH K-HANKEL-WIGNER TRANSFORMS 531

Let η > 0. The inner product 〈·, ·〉η,Hs(R,µk) on the space Hs(R, µk) is defined
by

〈f, h〉η,Hs(R,µk) = η〈f, h〉Hs(R,µk) + 〈Vg(f),Vg(h)〉L2(R2,νk),

and the norm is defined by ‖f‖η,Hs(R,µk) =
√
〈f, f〉η,Hs(R,µk).

Next, we suppose that g ∈ L2(R, µk). By (ii) of Theorem 3.2, the inner
product 〈·, ·〉η,Hs(R,µk) can be expressed as

(19) 〈f, h〉η,Hs(R,µk) = η〈f, h〉Hs(R,µk) + ‖g‖2L2(R,µk)〈f, h〉L2(R,µk).

Theorem 4.1. Let η > 0 and s > k and let g ∈ L2(R, µk). The space Hs(R, µk)
equipped with the norm ‖ · ‖η,Hs(R,µk) has the reproducing kernel

(20) Kη,g(x, y) =

∫
R

Bk(x, z)Bk(y, z)dµk(z)

η(1 + |z|)s + ‖g‖2L2(R,µk)
,

that is

(i) For all y ∈ R, the function x 7→ Ks(x, y) belongs to Hs(R, µk).
(ii) The reproducing property: for all f ∈ Hs(R, µk) and y ∈ R,

〈f,Kη,g(·, y)〉η,Hs(R,µk) = f(y).

Proof. (i) By (4) the function Φy : z 7→ Bk(y,z)
η(1+|z|)s+‖g‖2

L2(R,µk)

belongs to L1 ∩

L2(R, µk). Then, the function Kη,g is well defined and by (iii) of Theorem 2.1,
we have

Kη,g(x, y) = F−1k (Φy)(x), x ∈ R.
From (i) of Theorem 2.1, it follows that Kη,g(·, y) ∈ L2(R, µk), and we have

(21) Fk(Kη,g(·, y))(z) =
Bk(y, z)

η(1 + |z|)s + ‖g‖2L2(R,µk)
, z ∈ R.

Then by (4), we obtain

|Fk(Kη,g(·, y))(z)| ≤ 1

η(1 + |z|)s
, z ∈ R,

and

‖Kη,g(·, y)‖2Hs(R,µk) ≤
1

η2

∫
R

dµk(z)

(1 + |z|)s
<∞.

Hence, the function Kη,s(·, y) belongs to Hs(R, µk) for all y ∈ R.
(ii) Let f ∈ Hs(R, µk) and y ∈ R. From (19) and (21), we have

〈f,Kη,g(·, y)〉η,Hs(R,µk) =

∫
R
Fk(f)(z)Bk(y, z)dµk(z)

= f(y).

The last equality is called the reproducing property, which furnishes the
proof of the theorem. �
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Theorem 4.2. Let s > k and g ∈ L2(R, µk). For any h ∈ L2(R2, νk) and for
any η > 0, the problem

(22) inf
f∈Hs(R,µk)

{η‖f‖2Hs(R,µk) + ‖h− Vg(f)‖2L2(R2,νk)
}

has a unique extremal function f∗η,h given by

f∗η,h(y) =

∫
R

∫
R
h(x, t)Ps(x, y, t)dµk(t)dµk(x),

where

Ps(x, y, t) =

∫
R

Bk(x, z)Bk(y, z)
√
τkt |Fk(g)|2(z)dµk(z)

η(1 + |z|)s + ‖g‖2L2(R,µk)
.

Proof. Firstly, the existence and unicity of the minimizer function f∗η,h that

satisfies (22) are given by Kimeldorf et al. [18], Matsuura et al. [19] and Saitoh
[23]. More precisely, f∗η,h is given by the reproducing kernel of Hs(R, µk) with

‖ · ‖η,Hs(R,µk) is a norm as

f∗η,h(y) = 〈h,Vg(Kη,g(·, y))〉L2(R2,νk),

where Kη,g is the reproducing kernel given by (20).
By (i) of Proposition 3.1 and the last equality, we have

Vg(Kη,g(·, y))(x, t) =

∫
R
Bk(x, z)Fk(Kη,g(·, y))(z)

√
τkt |Fk(g)|2(z)dµk(z)

=

∫
R

Bk(x, z)Bk(y, z)
√
τkt |Fk(g)|2(z)

η(1 + |z|)s + ‖g‖2L2(R,µk)
dµk(z).

This clearly yields the result. �

Theorem 4.3. Let s > k and g ∈ L2(R, µk). For any h ∈ L2(R2, νk) and for
any η > 0, we have

(i) f∗η,h(y) =

∫
R

∫
R

Bk(y,z)
√
τkt |Fk(g)|2(z)Fk(h(·,t))(z)

η(1+|z|)s+‖g‖2
L2(R,µk)

dµk(t)dµk(z).

(ii) Fk(f∗η,h)(z)= 1
η(1+|z|)s+‖g‖2

L2(R,µk)

∫
R

√
τkt |Fk(g)|2(z)Fk(h(·, t))(z)dµk(t).

(iii) ‖f∗η,h‖Hs(R,µk) ≤ 1
2
√
η‖h‖L2(R2,νk).

Proof. (i) From Theorem 4.2 and Fubini’s theorem, we have

f∗η,h(y) =

∫
R

∫
R

Bk(y, z)
√
τkt |Fk(g)|2(z)

η(1+|z|)s+‖g‖2L2(R,µk)

[∫
R
h(x, t)Bk(x, z)dµk(x)

]
dµk(t)dµk(z)

=

∫
R

∫
R

Bk(y, z)
√
τkt |Fk(g)|2(z)Fk(h(·, t)(z)

η(1+|z|)s+‖g‖2L2(R,µk)
dµk(t)dµk(z).

(ii) The function

z 7→ 1

η(1 + |z|)s + ‖g‖2L2(R,µk)

∫
R

√
τkt |Fk(g)|2(z)Fk(h(·, t))(z)dµk(t)
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belongs to L1 ∩ L2(R, µk). Then from assertions (i) and (iii) of Theorem 2.1,
it follows that f∗η,h belongs to L2(R, µk), and

Fk(f∗η,h)(z) =
1

η(1 + |z|)s + ‖g‖2L2(R,µk)

∫
R

√
τkt |Fk(g)|2(z)Fk(h(·, t))(z)dµk(t).

(iii) From (ii), Hölder’s inequality and (10), we have

|Fk(f∗η,h)(z)|2 ≤
‖g‖2L2(R,µk)[

η(1 + |z|)s + ‖g‖2L2(R,µk)

]2 ∫
R
|Fk(h(·, t))(z)|2dµk(t).

Thus,

‖f∗η,h‖2Hs(R,µk)

≤
∫
R

(1 + |z|)s‖g‖2L2(R,µk)[
η(1 + |z|)s + ‖g‖2L2(R,µk)

]2 [∫
R
|Fk(h(·, t))(z)|2dµk(t)

]
dµk(z)

≤ 1

4η

∫
R

[∫
R
|Fk(h(·, t))(z)|2dµk(t)

]
dµk(z)

=
1

4η
‖h‖2L2(R2,νk)

,

which furnishes the proof of the theorem. �

Theorem 4.4. Let s > k and g ∈ L2(R, µk). For any h ∈ L2(R2, νk) and for
any η > 0, we have

Vg(f∗η,h)(x, y)

=

∫
R

∫
R

Bk(x, z)
√
τkt |Fk(g)|2(z)τky |Fk(g)|2(z)Fk(h(·, t))(z)
η(1 + |z|)s + ‖g‖2L2(R,µk)

dµk(t)dµk(z).

Proof. From (i) of Proposition 3.1, we have

Vg(f∗η,h)(x, y) =

∫
R
Bk(x, z)Fk(f∗η,h)(z)

√
τky |Fk(g)|2(z)dµk(z).

Then by (ii) of Theorem 4.3 we infer the result. �
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