DOI QR코드

DOI QR Code

Anti-cancer effects of kelp extract in mouse melanoma B16-F0 cell line through apoptosis

마우스 흑색종 세포주 B16-F0에서 다시마 추출물의 세포사멸을 통한 항암 효과

  • Lee, Seong-Uk (Department of Food and Nutrition, Daegu University) ;
  • Kim, Yoon Hee (Department of Food and Nutrition, Daegu University)
  • 이성욱 (대구대학교 식품영양학과) ;
  • 김윤희 (대구대학교 식품영양학과)
  • Received : 2021.12.27
  • Accepted : 2022.02.18
  • Published : 2022.04.30

Abstract

Kelp belongs to the brown algae family and has been reported to exert anti-cancer effects on some cancer types, however studies have not been reported on the anti-cancer effects of kelp extracts on melanoma. In this study, the anti-cancer effects of kelp extract in B16-F0 cells were investigated, and the underlying molecular mechanisms were assessed. Kelp extract was found to inhibit the proliferation of B16-F0 cells, induce cytotoxicity, inhibit cell colony formation, and induce DNA fragmentation and apoptosis. The molecular mechanism was found to involve kelp extract increasing the expression of cytochrome-c and activated caspase-9 in the intrinsic apoptotic pathway. In addition, kelp extract upregulated the expression of Fas-associated protein with death domain and activated caspase-8 in the extrinsic apoptosis pathway. Activation of caspase-9 and caspase-8 by kelp extract induced activation of caspase-3 and cleaved poly adenosine diphosphate-ribose polymerase, consequently inducing apoptosis. These data suggest that kelp extract represents a potential therapeutic agent for melanoma.

다시마 추출물은 인체의 중금속 제거 효과 및 항암효과가 있다고 알려져 있다. 현재 국내에는 고령화, 야외활동의 증가, 오존층 파괴 등으로 인하여 흑색종 발병률이 증가하고 있다. 흑색종의 치료는 외과 수술적 제거를 원칙으로 하고 항암요법이나 방사선 치료, 면역요법 등이 보존적인 방법으로 사용되고 있다. 하지만 재발의 확률이 높고, 항암치료제에 대한 저항성을 나타내는 경우가 많아 치료에 어려움이 있다. 본 연구에서는 다시마 추출물이 B16-F0에서 항암효과를 확인하고 또한 어떠한 경로를 통하여 항암효과를 나타내는지 밝히기 위한 분자적 기전을 연구하였다. 다시마 추출물은 B16-F0의 증식을 억제하고 세포독성을 유도하였다. 그리고 세포의 군집형성을 억제하고, DNA 분절을 일으키며, 세포사멸을 일으키는 것으로 나타났다. 이러한 다시마 추출물의 흑색종 사멸효과를 유도하는 분자적 기전을 확인한 결과, 내인성 세포사멸 경로인 cytochrome c를 증가시켜 caspase-9 활성화하였고, 외인성 세포사멸 경로인 FADD를 증가시켜 caspase-8을 활성화하였다. Caspase-9의 활성화와 caspase-8의 활성화는 caspase-3를 활성화 시켜 결과적으로 PARP를 활성화하여 세포사멸을 유도하였다. 본 연구의 제한점으로는 단일물질이 아닌 추출물로 인한 다시마 추출물의 정확한 농도를 구하기 어려운 한계가 있으며 추후 연구에서 보완되어야 하는 부분이라 생각된다. 그럼에도 불구하고 본 실험에서 다시마 추출물은 내인성과 외인성 세포사멸 경로를 활성화시켜 흑색종에 독성을 가지며, 증식을 억제하고 세포사멸을 유도하는 것으로 나타났다. 다시마는 갈조류에 속해 있으며, 다양한 성분들이 포함되어 있는데 그중 fucoidan이 항암효과를 가지는 것으로 알려져 있다(Kang 등, 2006). Fucoidan과 관련한 흑색종의 연구는 미백 연구가 대부분이기 때문에, 이후 연구에서는 in vitro 및 in vivo에서 흑색종에 대한 fucoidan의 항암효과 검토 등 다양한 데이터들이 축적된다면 향후 다시마 추출물이 흑색종의 치료에 사용될 가능성이 있을 것으로 생각된다.

Keywords

Acknowledgement

이 논문은 2019학년도 대구대학교 교내학술연구비지원(20190637)에 의한 논문으로 이에 감사드립니다.

References

  1. Bae TJ, Kang DS. Effects of blood-anticoagulant activity of fucoidan extracted from sporophylls of Undaria pinnatifida. Bull. Fish. Sci. Inst. Chonnam Natl. Univ. 21: 24-31 (2013)
  2. Bhatia S, Tykodi SS, Thompson JA. Treatment of metastatic melanoma. An overview. Oncology. 23: 488-495 (2009)
  3. Blank V, Bellizzi Y, Zotta E, Cornier PG, Delpiccolo CML, Boggian DB, et al. A novel penicillin derivative induces antitumor effect in melanoma cells. Anti-cancer Drug. 29: 416-428 (2018) https://doi.org/10.1097/CAD.0000000000000611
  4. Brentnall M, Rodriguez ML, Guevara RLD, Cepero E, Boise LH. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 14: 32 (2013) https://doi.org/10.1186/1471-2121-14-32
  5. Cai F, Xu H, Cao N, Zhang X, Liu J, Lu Y, et al. ADT-OH, a hydrogen sulfide-releasing donor, induces apoptosis and inhibits the development of melanoma in vivo by upregulating FADD. Cell Death Dis. 11: 33 (2020) https://doi.org/10.1038/s41419-020-2222-9
  6. Chen G, Davies MA. Targeted therapy resistance mechanisms and therapeutic implications in melanoma. Hematol Oncol Clin. N. 28: 523-536 (2014) https://doi.org/10.1016/j.hoc.2014.03.001
  7. Choo KS, Lee HN, Shin SA, Kim HJ, Park YS, Kim SK, et al. Induction of growth inhibition and apoptosis in human cancer cells by a brown algae extract. J. Life Sci. 26: 555-562 (2016) https://doi.org/10.5352/JLS.2016.26.5.555
  8. Cui CB, Cho MA, Jun YY, Lee DS, Ham SS. Antimutagenicity and cytotoxicity effect of ethanol extract from korea traditional mackjang added sea tangle. J. East Asian Soc. Dietary Life. 12: 15-22 (2002)
  9. Decker T, Lohmann-Matthes ML. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods. 115: 61-69 (1988) https://doi.org/10.1016/0022-1759(88)90310-9
  10. Easwaran H, Tsai HC, Baylin SB. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell. 54: 716-727 (2014) https://doi.org/10.1016/j.molcel.2014.05.015
  11. Escring AJ, Goni CI. Nutritional Evaluation and Physiological Effects of Edible Seaweeds. Arch. Latinoam Nutr. 49: 114-120 (1999)
  12. Fan B, Dewapriya P, Li F, Blumel M, Tasdemir D. Pyrenosetins A-C, New Decalinoylspirotetramic Acid Derivatives Isolated by Bioactivity-Based Molecular Networking from the Seaweed-Derived Fungus Pyrenochaetopsis sp. FVE-001. Mar. Drugs. 18: 47 (2020) https://doi.org/10.3390/md18010047
  13. Grozdanic N, Djuricic I, Kosanic M, Zdunic G, Savikin K, Etahiri S, et al. Fucus spiralis extract and fractions: anticancer and pharmacological potentials. JBUON. 25: 1219-1229 (2020)
  14. Holohan C, Schaeybroeck SV, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer. 13: 714-726 (2013) https://doi.org/10.1038/nrc3599
  15. Hur SS, Jung JY, Park YH, Joo GJ, Choi YH. Studies on the physical properties of sea tangl extracts by the different extract methods. Agric. Res. Bull. Kyungpook Natl. Uni. 17: 79-83 (1999)
  16. Jeon YE, Yim XF, Lim SS, Chung CK, Kang IJ. Antioxidant activities and acetylcholinesterase inhibitory activities from seaweed extracts, J. Korean Soc. Food Sci. Nutr. 41: 443-449 (2012) https://doi.org/10.3746/JKFN.2012.41.4.443
  17. Jung SH, Ku MJ, Moon HJ, Yu BC, Jeon MJ, Lee YH. Inhibitory effects of fucoidan on melanin synthesis and tyrosinase activity. J. Life Sci. 19: 75-80 (2009) https://doi.org/10.5352/JLS.2009.19.1.075
  18. Kang SY, Kim E, Kang I, Lee M, Lee Y. Anti-diabetic effects and anti-inflammatory effects of Laminaria japonica and Hizikia Fusiforme in skeletal muscle: In vitro and In vivo Model. Nutrients. 10: 491 (2018) https://doi.org/10.3390/nu10040491
  19. Kang KS, Nam CS, Park EK, Ha BJ. The enzymaticn regulatory effects of laninaria japonica fucoidan extract in hepatotoxicity. J. Life Sci. 16: 1104-1108 (2006) https://doi.org/10.5352/JLS.2006.16.7.1104
  20. Kim SH, Chung SH. Comparison of high dose interferon-α2b immunotherapy and dacarbazine chemotherapy as postoperative treatment of malignant melanoma. J. Korean Orthop. Assoc. 51: 426-431 (2016) https://doi.org/10.4055/jkoa.2016.51.5.426
  21. Kim SA, Kim J, Woo MK, Kwak CS, Lee MS. Antimutagenic and cytotoxic effects of ethanol extracts from five kinds of seaweeds. J. Korean Soc. Food Sci. Nutr. 34: 451-459 (2005) https://doi.org/10.3746/JKFN.2005.34.4.451
  22. Lecoeur H, Ledru E, Prevost MC, Gougeon ML. Strategies for phenotyping apoptotic peripheral human lymphocytes comparing ISNT, annexin-V and 7-AAD cytofluotometric staining methods. J. Immunol. Methods. 209: 111-123 (1997) https://doi.org/10.1016/S0022-1759(97)00138-5
  23. Lee YS, Kim DS, Ryu BH, Lee SH. Antitumor and immunomodulating effects of seaweeds toward sarcoma-180 cell. J. Korean Soc. Food Sci. Nutr. 21: 544-550 (1992)
  24. Lens MB, Dawes M. Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma. Brit. J. Dermatol. 150: 179-185 (2004) https://doi.org/10.1111/j.1365-2133.2004.05708.x
  25. Matassov D, Kagan T, Leblanc J, Sikorska M, Zakeri Z. Measurement of apoptosis by DNA fragmentation. Methods Mol. Biol. 282: 1-17 (2004)
  26. Ma ZY, Qiao X, Xie CZ, Shao J, Xu JY, Qiang ZY, et al. Activities of a novel Schiff Base copper (II) complex on growth inhibition and apoptosis induction toward MCF-7 human breast cancer cells via mitochondrial pathway. J. Inorg. Biochem. 117: 1-9 (2012) https://doi.org/10.1016/j.jinorgbio.2012.08.007
  27. Moussvou G, Kwak DH, Obiang OBW, Maranguy CAO, Dinzouna BSD, Lee DH, et al. Anticancer effects of different seaweeds on human colon and breasst cancers. Marine Drugs. 12: 4898-4911 (2014) https://doi.org/10.3390/md12094898
  28. Nakashima H, Kido Y, Kobayashi N, Motoki Y, Neushul M, Yamamoto N. Purification and characterization of an avian myeloblastosis and human immunodeficiency virus reverse transcriptase inhibitorsulfated polysaccharide extracted from sea algae. Antimicrob. Agents. CH. 31: 1524-1528 (1987) https://doi.org/10.1128/AAC.31.10.1524
  29. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 468: 973-977 (2010) https://doi.org/10.1038/nature09626
  30. Oh CM, Cho H, Won YJ, Kong HJ, Roh YH, Jeong KH, et al. Nationwide trends in the incidence of melanoma and non- melanoma skin cancers from 1999 to 2014 in South Korea. Cancer Res. Treat. 50: 729-737 (2018) https://doi.org/10.4143/crt.2017.166
  31. Rampal G, Khanna N, Thind TS, Vig AP. Role of isothiocyanates as anticancer agents and their contributing molecular and cellular mechanisms. Med. Chem. Drug Disco. 3: 79-93 (2012)
  32. Raineri A, Fasoli S, Campagnari R, Gotte G, Menegazzi M. Onconase restores cytotoxicity in dabrafenib-resistant A375 human melanoma cells and a?ects cell migration, invasion and colony formation capability. Int. J. Mol. Sci. 20: 5980 (2019) https://doi.org/10.3390/ijms20235980
  33. Rigel DS, Carucci JA. Malignant melanoma: prevention, early detection, and treatment in the 21st century. CA Cancer J. Clin. 50: 215-236 (2000) https://doi.org/10.3322/canjclin.50.4.215
  34. Rigel DS, Russak J, Friedman R. The evolution of melanoma diagnosis: 25 years beyond the ABCDs. CA Cancer J. Clin. 60: 301-316 (2010) https://doi.org/10.3322/caac.20074
  35. Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death. Differ. 22:526-539 (2014) https://doi.org/10.1038/cdd.2014.216
  36. Tourneur L, Buzyn A, Chiocchia G. FADD adaptor in cancer. Med. Immunol. 4: 1-9 (2005) https://doi.org/10.1186/1476-9433-4-1
  37. Tummers B, Green DR. Caspase-8; regulating life and death. Immunol. Rev. 277: 76-89 (2017) https://doi.org/10.1111/imr.12541
  38. Wang Y, Sun HJ, Li RG, Wang XM, Cheng ZQ, Lou N. Reprogramming factors induce proliferation and inhibit apoptosis of melanoma cells by changing the expression of particular genes. Mol. Med. Rep. 19: 967-973 (2019)