DOI QR코드

DOI QR Code

Analyzing Game Streaming Application Reviews Using Text Mining Approach: Research to Strengthen Digital Competitiveness

텍스트마이닝 기법을 활용한 게임 스트리밍 애플리케이션 리뷰 분석: 디지털 경쟁력 강화를 위한 연구

  • Jin, Wenhui (Department of Management of Technology, Yonsei University) ;
  • Lee, Jungwoo (Graduate School of Information, Yonsei University)
  • ;
  • 이정우 (연세대학교 정보대학원)
  • Received : 2022.02.17
  • Accepted : 2022.04.20
  • Published : 2022.04.28

Abstract

As the growth of the live streaming service market is accelerating due to COVID-19, the number of downloads and reviews of live streaming mobile applications is also rapidly skyrocketing. This study is to research game streaming applications using Twitch reviews as database. A total of 8 topics are extracted through LDA topic modeling and 7 out of them are detected to be inconvenience factors. Then, to pinpoint the main inconvenience factors, co-occurrence analysis is used in order to find out main factors. Finally, based on previous studies, several solutions are provided, which can solve the inconvenience factors(advertisement, UI design, technology problems) as well as strengthening digital competitiveness. This study will serve as an opportunity to improve digital competitiveness not only for Twitch but also for other game live streaming service companies in the future.

코로나 19로 인해 라이브 스트리밍 서비스 시장의 성장이 가속화되고 있어 라이브 스트리밍 모바일 애플리케이션의 다운로드와 리뷰의 수도 급격히 증가하고 있다. 본 연구에서는 게임 스트리밍 서비스 기업 중 하나인 트위치(Twitch)의 모바일 애플리케이션을 대상으로 하여 텍스트마이닝 기법 중 LDA 토픽모델링을 통해 총 8개의 토픽을 추출하였는데 그중 7가지 불편요인들이 추출되고, 공기어 분석 방법을 활용해 사용자 리뷰를 분석하여 사용자가 주로 느끼는 5가지 불편요인들을 탐지하여, 최종, 광고, UI 디자인, 기술문제를 해결하는 동시에 디지털 경쟁력도 강화할 수 있는 솔루션을 제공하였다. 본 연구에서 제공한 솔루션은 향후 트위치(Twitch)뿐만 아니라 타 라이브 스트리밍 서비스 기업에도 디지털 경쟁력을 향상할 수 있는 기회를 제공할 수 있을 것이다. 향후 본 연구에서 제공한 솔루션의 유용성 및 신뢰성을 판단하기 위해 진일보 연구할 가치가 있다.

Keywords

References

  1. Sydow, L. (2021, February 17). A Year of Bingeing: Time Spent in Video Streaming Apps Hit Nearly 1 Trillion Hours in 2020. APP ANNIE. https://www.appannie.com/en/insights/mobile-minute/1-trillion-hours-streaming-mobile-2020/
  2. Wijman, T. (2021, July 1). The Games Market's Bright Future: Player Numbers Will Soar Past 3 Billion Towards 2024 as Yearly Revenues Exceed $200 Billion. Newzoo. https://newzoo.com/insights/articles/the-games-markets-bright-future-player-numbers-will-soar-past-3-billion-towards-2024-as-yearly-revenues-exceed-200-billion/
  3. Nguyen, T. S., Lauw, H. W., & Tsaparas, P. (2015, February). Review synthesis for micro-review summarization. In Proceedings of the eighth ACM international conference on web search and data mining, (pp. 169-178). DOI : 10.1145/2684822.2685321
  4. Gao, C., Zeng, J., Lyu, M. R., & King, I. (2018, May). Online app review analysis for identifying emerging issues. Proceedings of the 40th International Conference on Software Engineering, (pp. 48-58). DOI : 10.1145/3180155.3180218
  5. Gao, C., Zheng, W., Deng, Y., Lo, D., Zeng, J., Lyu, M. R., & King, I. (2019, May). Emerging app issue identification from user feedback: Experience on wechat. In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP) (pp. 279-288). IEEE. DOI : 10.1109/ICSE-SEIP.2019.00040
  6. Jung, J. H., Chung, H. I., & Lee, Z. K. (2021). An Analysis of Mobile Food Delivery App'Baemin'by Using Text Mining and ARIMA Model. Journal of Digital Contents Society, 22(2), 291-299. DOI : 10.9728/dcs.2021.22.2.291
  7. J. M. Xu. (2020). Web Online Review Text Mining. Master's dissertation. Central China Normal University, Wuhan, China.
  8. Chen, C. C. & Lin, Y. C. (2018). What drives live-stream usage intention? The perspectives of flow, entertainment, social interaction, and endorsement. Telematics and Informatics, 35(1), 293-303. DOI : 10.1016/j.tele.2017.12.003
  9. Hamari, J. & Sjoblom, M. (2017). What is eSports and why do people watch it?. Internet research. DOI : 10.1108/IntR-04-2016-0085
  10. Sjoblom, M., & Hamari, J. (2017). Why do people watch others play video games? An empirical study on the motivations of Twitch users. Computers in human behavior, 75, 985-996. DOI : 10.1016/j.chb.2016.10.019
  11. Hilvert-Bruce, Z., Neill, J. T., Sjoblom, M., & Hamari, J. (2018). Social motivations of live-streaming viewer engagement on Twitch. Computers in Human Behavior, 84, 58-67. DOI : 10.1016/j.chb.2018.02.013
  12. Yu, E., Jung, C., Kim, H., & Jung, J. (2018). Impact of viewer engagement on gift-giving in live video streaming. Telematics and Informatics, 35(5), 1450-1460. DOI : 10.1016/j.tele.2018.03.014
  13. Kwon, J.-H., & Kim, S.-I. (2018). Study on the UX of Internet Broadcasting -Focused on the Afreeca TV, the Twitch TV-. Journal of Digital Convergence, 16(3), 407-413. DOI : 10.14400/JDC.2018.16.3.407
  14. Chen, W. K., Chen, L. S., & Pan, Y. T. (2021). A text mining-based framework to discover the important factors in text reviews for predicting the views of live streaming. Applied Soft Computing, 111, 107704. DOI : 10.1016/j.asoc.2021.107704
  15. Taylor, N. T. (2016). Now you're playing with audience power: The work of watching games. Critical Studies in Media Communication, 33(4), 293-307. DOI : 10.1080/15295036.2016.1215481
  16. Li, Y., Wang, C., & Liu, J. (2020). A systematic review of literature on user behavior in video game live streaming. International journal of environmental research and public health, 17(9), 3328. DOI : 10.3390/ijerph17093328
  17. J. Y. Jang & H. R. Choi. (2021). Evolution of Digital Game: From Contents to Platform. Seongnam : SORi
  18. Wijman, T. (2021, Dec 22). The Games Market and Beyond in 2021: The Year in Numbers. Newzoo. https://newzoo.com/insights/articles/the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming/
  19. Twitch Statistics & Charts. TwitchTracker. https://twitchtracker.com/statistics
  20. Hu, N., Zhang, J., & Pavlou, P. A. (2009). Overcoming the J-shaped distribution of product reviews. Communications of the ACM, 52(10), 144-147. DOI : 10.1145/1562764.1562800
  21. Hu, N., Pavlou, P. A., & Zhang, J. J. (2009). Why do online product reviews have a J-shaped distribution? Overcoming biases in online word-of-mouth communication. Communications of the ACM, 52(10), 144-147. DOI : 10.2139/ssrn.2380298
  22. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of machine Learning research, 3, 993-1022.
  23. Lee, D.-Y., & Yi, H.-S. (2021). Exploring methods for determining the appropriate number of topics in LDA: Focusing on perplexity and harmonic mean method. Journal of Educational Evaluation, 34(1), 1-30. DOI : 10.31158/JEEV.2021.34.1.1
  24. Freeman, L. C. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry, 40(1), 35-41. DOI : 10.2307/3033543
  25. Baek, S.-M., & Moon, I.-O. (2021). The Study on the patient safety culture convergence research topics through text mining and CONCOR analysis. Journal of Digital Convergence, 19(12), 359-367. DOI : 10.14400/JDC.2021.19.12.359
  26. B. I. Kang & J. H. Kim. (2013). Profiling and Co-word Analysis of Teaching Korean as a Foreign Language Domain. Journal of the Korean Society for Information Management, 30(4), 195-213. DOI : 10.3743/KOSIM.2013.30.4.195
  27. Lee, N., Kim, J.-H., & Mun, H.-J. (2019). Exploration of Emotional Labor Research Trends in Korea through Keyword Network Analysis. Journal of Convergence for Information Technology, 9(3), 68-74. DOI : 10.22156/CS4SMB.2019.9.3.068
  28. 2022. Twitch. Namuwiki. https://namu.wiki/w/트위치#fn-5
  29. Kolsaker, A., & Drakatos, N. (2009). Mobile advertising: The influence of emotional attachment to mobile devices on consumer receptiveness. Journal of Marketing Communications, 15(4), 267-280. DOI : 10.1080/13527260802479664
  30. J. Y. Ha, M. S. Chung & K. H. Han. (2020). Advertising Effectiveness in the Circumstance of Watching Mobile Video : Based on Analyses of the Effects of Advertising Intrusiveness and Contextual Congruity. Advertising Research, (127), 45-78. DOI : 10.16914/ar.2020.127.45
  31. Bits and Subscriptions. Twitch Streamer camp. https://twitch.tv/creatorcamp/ko-kr/get-rewarded/bits-and-subscriptions/
  32. Zheng, Y., Wu, D., Ke, Y., Yang, C., Chen, M., & Zhang, G. (2016). Online cloud transcoding and distribution for crowdsourced live game video streaming. IEEE Transactions on Circuits and Systems for Video Technology, 27(8), 1777-1789. DOI : 10.1109/TCSVT.2016.2556584
  33. Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the national academy of sciences, 103(23), 8577-8582. DOI : 10.1073/pnas.0601602103
  34. C. S. Park & C. W. Chung. (2013). Text Network Analysis: Detecting Shared Meaning through Socio-cognitive Networks of Policy Stakeholders. Journal of Governmental Studies, 19(2), 73-108.
  35. Morales-Ramirez, I., Munante, D., Kifetew, F., Perini, A., Susi, A., & Siena, A. (2017, September). Exploiting user feedback in tool-supported multi-criteria requirements prioritization. In 2017 IEEE 25th International Requirements Engineering Conference (RE) (pp. 424-429). IEEE. DOI : 10.1109/RE.2017.41
  36. Palomba, F., Linares-Vasquez, M., Bavota, G., Oliveto, R., Di Penta, M., Poshyvanyk, D., & De Lucia, A. (2015, September). User reviews matter! tracking crowdsourced reviews to support evolution of successful apps. In 2015 IEEE international conference on software maintenance and evolution (ICSME) (pp. 291-300). IEEE. DOI : 10.1109/ICSM.2015.7332475.
  37. M. J. Kim & H. J. Rhee. (2017). Effects of Engagement and Usage Motivation on Perceived Intrusiveness & Avoidance of Advertising: Differential Effects in Smart Phone Applications. The Academy of Customer Satisfaction Management, 19(3), 125-144.
  38. Y. G. Jo, J. E. Lee & K. H. Kim. (2017). Study on Measure to Increase Mobile Advertisement Effect of Smartphone APP by Reward. The Korean Society of Science & Art, 27, 259-276. DOI : 10.17548/ksaf.2017.01.27.259
  39. S. J. Kim, K. H. Lee & M. K. Han. (2014). Effects of the Point Exhaustion Type of Mobile Reward App on Users' Preference, Satisfaction and Usage Intention. A Journal of Brand Design Association of Korea, 12(1), 143-156. DOI : 10.18852/bdak.2014.12.1.143
  40. M. J. Kim, S. K. Yoon & J. H. Choi. (2014). The Effect of Aesthetics on the User's Loyalty of Mobile Video Streaming Apps. Journal of the Korean Society of Design Culture, 20(4), 63-74.
  41. J. Shi. (2021). Analysis of Problems and Countermeasures of E-commerce Live Broadcasting Operation on Douyin Platform. Master's dissertation. Liaoning University, Shenyang, China.
  42. M. Du. (2021). Live broadcast of Lianmai Xinjianghu. JIEMIAN. https://www.jiemian.com/article/6172718.html
  43. Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, & David M. Blei. (2004). Sharing clusters among related groups: hierarchical Dirichlet processes. In Proceedings of the 17th International Conference on Neural Information Processing Systems (NIPS'04), 1385-1392.
  44. McCallum, A. K. (2002). MALLET: A Machine Learning for Language Toolkit. (http://mallet.cs.umass.edu)
  45. Blei, D. M., Griffiths, T. L., & Jordan, M. I. (2010). The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies. Journal of the ACM (JACM), 57(2), (pp. 1-30). DOI : 10.1145/1667053.1667056