DOI QR코드

DOI QR Code

AR-Based Character Tracking Navigation System Development

AR기반 캐릭터 트래킹 네비게이션 시스템 개발

  • Received : 2022.01.12
  • Accepted : 2022.04.17
  • Published : 2022.04.30

Abstract

In this study, real-time character navigation using AR lens developed by Nreal is developed. Real-time character navigation is not possible with general marker-based AR because NPC characters must guide while moving in an unspecified space. To replace this, a markerless AR system was developed using Digital Twin technology. Existing markerless AR is operated based on hardware such as GPS, gyroscope, and magnetic sensor, so location accuracy is low and processing time in the system is long, which results low reliability in real-time AR environment. In order to solve this problem, using the SLAM technique to construct a space into a 3D object and to construct a markerless AR based on point location, AR can be implemented without any hardware intervention in a real-time AR environment. This real-time AR environment configuration made it possible to implement a navigation system using characters in tourist attractions such as Suncheon Bay Garden and Suncheon Drama Filming Site.

본 연구에서는 Nreal에서 개발한 AR글래스를 활용한 실시간 캐릭터 네비게이션을 개발한다. 실시간 캐릭터 네비게이션은 특정하지 않은 공간을 NPC 캐릭터가 이동하면서 안내를 하기 때문에 일반적인 마커 기반 AR로는 불가능하다. 이를 대체하기 위해서 디지털 트윈 기술을 기반으로 하는 마커리스 AR 시스템을 개발하였다. 기존 마커리스 AR은 GPS, 비컨 등의 하드웨어를 기반으로 운영되기 때문에 위치에 대한 정확도가 낮고 시스템에서 처리하는 시간이 길어져 실시간 AR 환경에서는 신뢰도가 낮은 문제가 발생한다. 이러한 문제점을 해결하기 위해 SLAM 기법을 활용하여 공간을 3D 개체로 구성하고, 디지털 트윈 기반의 마커리스 AR을 구성함으로써 실시간 AR 환경에서 별도의 하드웨어 사용 없이 AR 구현이 가능하게 된다. 이러한 실시간 AR 환경 구성은 순천만 정원, 순천 드라마촬영장 등 관광지에서 캐릭터를 이용한 네비게이션 시스템 구현을 가능하게 하였다.

Keywords

Acknowledgement

이 논문은 2021년 순천대학교 학술연구비(과제번호: 2021-0320) 공모과제로 연구되었음.

References

  1. R. T. Azuma, "A Survey of Augmented Reality," Teleoperators and Virtual Environments, vol. 6, no. 5, 2006, pp. 355-385. https://doi.org/10.1162/pres.1997.6.4.355
  2. K. Chio, D. Jung, S. Lee, and J. Choi, "Interaction Augment Reality System using a Hand Motion," Journal of Korea Multimedia Society, vol. 15, no. 4, 2012, pp. 425-438. https://doi.org/10.9717/KMMS.2012.15.4.425
  3. K. Aravind, P. Raja, and R. Aniirudh, "Tomato crop disease classification using pre-trained deep learning algorithm," Procedia Computer Science, vol. 133, no. 1, 2018, pp. 1040-1047. https://doi.org/10.1016/j.procs.2018.07.070
  4. G. Seo, "A Study on the Utilization Methods of Educational Content Based on the Analysis of Mobile Games," Journal of Digital Contents Society, vol. 14, no. 2, 2013, pp. 125-134. https://doi.org/10.9728/DCS.2013.14.2.125
  5. S. Kim and J. Ahn, "Tomato Crop Diseases Classification Models Using Deep CNN-based Architectures," J. of the Korea Academia-Industrial cooperation Society, vol. 22, no. 5, 2021, pp. 7-14. https://doi.org/10.5762/KAIS.2021.22.5.7
  6. W. Sun and T. Wu. "Image synthesis from reconfigurable layout and style," In Proc. of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, Oct. 2019.
  7. J. Yoo, "A Design of Small Scale Deep CNN Model for Facial Expression Recognition using the Low Resolution Image Datasets," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 1, 2021, pp. 75-80. https://doi.org/10.13067/JKIECS.2021.16.1.75
  8. Y. Jeong and G. Choi, "Efficient iris recognition using deep-learning convolution neural network(CNN)," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 3, 2020, pp. 521-526. https://doi.org/10.13067/JKIECS.2020.15.3.521
  9. R. Martinez-Cantin and J. A. Castellanos, "Unscented SLAM for large-scale outdoor environments," Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2005, pp 328-333.
  10. J. Kim, C. Park, and I. Kweon, "Vision-based navigation with efficient scene recognition," Journal of Intelligent Service Robotics, vol. 4, 2011, pp. pp. 107-112. https://doi.org/10.1007/s11370-010-0077-0
  11. A. Davison, "MonoSLAM: Real-Time Single Camera SLAM," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, 2007, pp. 227-232. https://doi.org/10.1109/TPAMI.2007.1049
  12. S. Yang, L. Ma, S. Jia, and D. Qin, "An Improved Vision-Based Indoor Positioning Method," in IEEE Access, vol. 8, 2020, pp. 26941-26949. https://doi.org/10.1109/access.2020.2968958
  13. S. Bak, M. Jeong, D. Hwang, U. Enkhjargal, N. Kim, and H. Yoon., "Study on Cochlodinium polykrikoides Red tide Prediction using Deep Neural Network under Imbalanced Data," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 6, 2019, pp. 1161-1170. https://doi.org/10.13067/JKIECS.2019.14.6.1161