DOI QR코드

DOI QR Code

The effect of Na2MoO4 addition on the formation and corrosion resistance of Cr-electroplated layer of low carbon steel

저탄소강의 크롬도금층 형성 및 내식성에 미치는 Na2MoO4 첨가의 영향

  • Bae, Ki Chang (Department of Metallurgical Engineering, Pukyong Nationa University) ;
  • Kim, Kiwook (Department of Metallurgical Engineering, Pukyong Nationa University) ;
  • Kim, Juho (Department of Metallurgical Engineering, Pukyong Nationa University) ;
  • Lee, Junghoon (Department of Metallurgical Engineering, Pukyong Nationa University)
  • 배기창 (부경대학교 금속공학과) ;
  • 김기욱 (부경대학교 금속공학과) ;
  • 김주호 (부경대학교 금속공학과) ;
  • 이정훈 (부경대학교 금속공학과)
  • Received : 2022.02.24
  • Accepted : 2022.02.26
  • Published : 2022.02.28

Abstract

Presence of cracks in electrodeposited hard chromium layer, which provide a path of corrosive media to steel substrate, is a serious issue in metal finishing with chromium electroplating. In this study, we added sodium molybdate in an electrolyte for chromium electroplating bath. 130g/L of sodium molybdate in Sargent bath for chromium electroplating causes a codepostion of molybdenum with chromium in a rage of 0.61 ~ 3.14 wt.%. The co-deposited molybdenum enhances the crystallinity of chromium layer, thus the hardness is slightly decreases by the addition of molybdate in electrolyte. However, due to the co-deposition of molybdenum, a crack-free chromium layer could be electrodeposited. Such crack-free chromium layer shows a significantly improved corrosion resistance.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었음.

References

  1. N. Imaz, E. Garcia-Lecina, J. A. Diez, M. Ostra, M. Sarret, Trans. IMF 90, (2012) 259-266. https://doi.org/10.1179/0020296712Z.00000000046
  2. D. Lim, B. Ku, D. Seo, C. Lim, E. Oh, S. E. Shim, S.-H. Baeck, Int. J. Refract. Metals Hard Mater. 89, (2020) 105213-105217. https://doi.org/10.1016/j.ijrmhm.2020.105213
  3. M. H. Sohi, A. A. Kashi, S. M. M. Hadavi, J. Mat. Proc. Tech. 138, (2003) 219-222. https://doi.org/10.1016/S0924-0136(03)00075-X
  4. Y. Song, D.-T. Chin, Electrochim. Acta 48, (2002) 349-356. https://doi.org/10.1016/S0013-4686(02)00678-3
  5. S. W. Yang, H. J. Ryu, J. H. Kim, B. O. Lee, C. B. Lee, J. Nucl. Mater. 401, (2010) 98-103. https://doi.org/10.1016/j.jnucmat.2010.04.004
  6. K. M. Yin, C. M. Wang, Surf. Coat. Technol. 114, (1999) 213-223. https://doi.org/10.1016/S0257-8972(99)00046-8
  7. Z. Zeng, L. Wang, L. Chen, J. Zhang, Surf. Coat. Technol. 201, (2006) 2282-2288. https://doi.org/10.1016/j.surfcoat.2006.03.038
  8. T. Watanabe, Current Topics in Amorphous Materials, Infrared Phys. Technol., North-Holland (1993) 137.
  9. L. Zhang, Y. Jin, X. Wang, J. Cai, Q. Guan, High Temp. Mater. Process. 38, (2019) 444-451. https://doi.org/10.1515/htmp-2018-0065
  10. D. Del Pianta, J. Frayret, C. Gleyzes, C. Cugnet, J. C. Dupin, I. Le Hecho, Electrochim. Acta 284, (2018) 234-241. https://doi.org/10.1016/j.electacta.2018.07.114
  11. H. Shen, L. Wang, J. Sun, Surf. Coat. Technol. 385, (2020) 125450-125457. https://doi.org/10.1016/j.surfcoat.2020.125450
  12. H.-H. Sheu, C.-H. Lin, S.-Y. Jian, H.-B. Lee, B.-R. Yang, Int. J. Electrochem. Sci. (2016) 7099-7110.
  13. L. Xu, L. Pi, Y. Dou, Y. Cui, X. Mao, A. Lin, C. Fernandez, C. Peng, ACS Sustain. Chem. Eng. 8, (2020) 15540-15549. https://doi.org/10.1021/acssuschemeng.0c04529
  14. S. Y. Kang, D. W. Lee, J. Korean Inst. Surf. Eng. 47, (2014) 116-120. https://doi.org/10.5695/JKISE.2014.47.3.116
  15. J. -Y. Lee, N. V. Phoung, D. K. Kang, M. Kim, S. C. Kwon, J. Korean Inst. Surf. Eng. 43, (2010) 297-303. https://doi.org/10.5695/JKISE.2010.43.6.297
  16. G. -C. Ye, K. -H. Seo, J. Korean Inst. Surf. Eng. 37, (2004) 12-31.
  17. M. Kim, J. J. Lee, D. Y. Kim, S. U. Park, S. C. Kwon, J. Korean Inst. Surf. Eng. 37, (2004) 179-184.