DOI QR코드

DOI QR Code

비정질 파이로프의 저온 압축에 따른 구조 변화를 이용한 멀티 앤빌 프레스의 상온 압력-부하 보정

Pressure-load Calibration of Multi-anvil Press at Ambient Temperature through Structural Change in Cold Compressed Amorphous Pyrope

  • 이주호 (서울대학교 지구환경과학부) ;
  • 김용현 (서울대학교 지구환경과학부) ;
  • 이아침 (서울대학교 지구환경과학부) ;
  • 김은정 (서울대학교 지구환경과학부) ;
  • 이서영 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Lhee, Juho (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Yong-Hyun (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, A Chim (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Eun Jeong (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Seoyoung (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung Keun (School of Earth and Environmental Sciences, Seoul National University)
  • 투고 : 2022.03.14
  • 심사 : 2022.03.25
  • 발행 : 2022.03.31

초록

지구/행성 내부의 다양한 지질학적 과정을 이해하기 위해서는 고온-고압 환경에서 지구 내부 구성물질의 특성을 이해하는 것이 필수적이다. 이러한 고압환경을 생성하기 위하여 사용되는 멀티 앤빌 프레스(multi-anvil press)는 주로 상부맨틀조건의 극한 상황을 재현하는데 사용된다. 멀티 엔빌프레스의 지질학적 사용을 위한 필수 보정 과정 중 하나는 압력을 생성하기 위한 프레스의 유압과 실제로 시료에 가해지는 압력 사이의 관계인 압력-부하 보정(pressure-load calibration)이다. 압력-부하 보정은 일반적으로 고온-고압 조건에서는 결정질 물질의 상전이를 이용해서 이루어지는데, 고온에서의 경우와 달리 저온(상온)의 경우 상전이 과정이 상대적으로 비효율적이므로 압력-부하 보정의 다른 방법론이 요구된다. 본 연구에서는 파이로프 조성(Mg3Al2Si3O12)의 비정질(비정질 파이로프)의 상온에서의 압축(cold compression)에 따라 발생하는 영구적인 고밀도화 현상(permanent densification)과 그 기원이 되는 알루미늄 배위 환경의 변화를 고해상도의 27Al MAS 및 3QMAS NMR 분광분석을 통해 정량화하고, 이로부터 압력에 따른 알루미늄의 배위수 변화를 이용해 14/8 HT 조립세트(assembly set)와 1,100톤 멀티 앤빌 프레스에 대한 상온에서의 압력-부하 보정을 수행하였다. 본 연구는 NMR분광분석을 이용하여 압력보정을 수행한 최초의 연구결과이며, 비정질 파이로프의 압축-감압에 따른 원자 단위에서의 비가역적 구조 변화는 섭입대 환경과 같은 저온 고압 환경에서 비정질 물질이 겪는 변화와 그에 따른 지질학적 현상의 이해고양에 실마리를 제공한다.

The proper estimation of physical and chemical properties of Earth materials and their structures at high pressure and high temperature conditions is key to the full understanding of diverse geological processes in Earth and planetary interiors. Multi-anvil press - high-pressure generating device - provides unique information of Earth materials under compression, mainly relevant to Earth's upper mantle. The quantitative estimation of the relationship between the oil load within press and the actual pressure conditions within the sample needs to be established to infer the planetary processes. Such pressure-load calibration has often been based on the phase transitions of crystalline earth materials with known pressure conditions; however, unlike at high temperature conditions, phase transitions at low (or room) temperatures can be sluggish, making the calibration at such conditions challenging. In this study, we explored the changes in Al coordination environments of permanently densified pyrope glasses upon the cold compression using the high-resolution 27Al MAS and 3QMAS NMR. The fractions of highly coordinated Al in the cold compressed pyrope glasses increase with increasing oil load and thus, the peak pressure condition. Based on known relationship between the peak pressure and the Al coordination environment in the compressed pyrope glasses at room temperature, we established a room temperature pressure-load calibration of the 14/8 HT assembly in 1,100-ton multi-anvil press. The current results highlight the first pressure-load calibration of any high pressure device using high-resolution NMR. Irreversible structural densification upon cold compression observed for the pyrope glasses provides insights into the deformation and densification mechanisms of amorphous earth materials at low temperature and high pressure conditions within the subducting slabs.

키워드

과제정보

본 연구는 한국연구재단(2020R1A3B2079815)의 지원으로 수행되었습니다. NMR 분석에 도움을 준 김효임 교수님께 감사드립니다. 심사위원들의 사독에 감사드립니다.

참고문헌

  1. Allwardt, J.R., 2005, Aluminum coordination and the densification of high-pressure aluminosilicate glasses. American Mineralogist, 90, 1218-1222. https://doi.org/10.2138/am.2005.1836
  2. Allwardt, J.R., Stebbins, J.F., Terasaki, H., Du, L.-S., Frost, D.J., Withers, A.C., Hirschmann, M.M., Suzuki, A. and Ohtani, E., 2007, Effect of structural transitions on properties of high-pressure silicate melts: 27Al NMR, glass densities, and melt viscosities. American Mineralogist, 92, 1093-1104. https://doi.org/10.2138/am.2007.2530
  3. Bertka, C.M. and Fei, Y., 1997, Mineralogy of the Martian interior up to core-mantle boundary pressures. Journal of Geophysical Research: Solid Earth, 102, 5251-5264. https://doi.org/10.1029/96JB03270
  4. Bista, S., Stebbins, J.F., Hankins, W.B. and Sisson, T.W., 2015, Aluminosilicate melts and glasses at 1 to 3 GPa: Temperature and pressure effects on recovered structural and density changes. American Mineralogist, 100, 2298-2307. https://doi.org/10.2138/am-2015-5258
  5. Bridgman, P.W. and Simon, I., 1953, Effects of very high pressures on glass. Journal of Applied Physics, 24, 405-413. https://doi.org/10.1063/1.1721294
  6. Della Valle, R.G. and Venuti, E., 1996, High-pressure densification of silica glass: A molecular-dynamics simulation. Physical Review B, 54, 3809-3816. https://doi.org/10.1103/physrevb.54.3809
  7. Frost, D.J., Poe, B.T., Tronnes, R.G., Liebske, C., Duba, A. and Rubie, D.C., 2004, A new large-volume multianvil system. Physics of the Earth and Planetary Interiors, 143-144, 507-514. https://doi.org/10.1016/j.pepi.2004.03.003
  8. Guerette, M., Poltorak, A., Fei, Y. and Strobel, T.A., 2019, Permanent densification of silica glass for pressure calibration between 9 and 20 GPa at ambient temperature. High Pressure Research, 39, 117-130. https://doi.org/10.1080/08957959.2019.1580364
  9. Ito, E., 2015, Multi-anvil cells and high pressure experimental methods, Treatise on Geophysics (Second Edition). Elsevier, Oxford, 233-261.
  10. Ji, H., Keryvin, V., Rouxel, T. and Hammouda, T., 2006, Densification of window glass under very high pressure and its relevance to Vickers indentation. Scripta Materialia, 55, 1159-1162. https://doi.org/10.1016/j.scriptamat.2006.08.038
  11. Kelsey, K.E., Stebbins, J.F., Singer, D.M., Brown, G.E., Mosenfelder, J.L. and Asimow, P.D., 2009, Cation field strength effects on high pressure aluminosilicate glass structure: Multinuclear NMR and La XAFS results. Geochimica et Cosmochimica Acta, 73, 3914-3933. https://doi.org/10.1016/j.gca.2009.03.040
  12. Keryvin, V., Meng, J.X., Gicquel, S., Guin, J.P., Charleux, L., Sangleboeuf, J.C., Pilvin, P., Rouxel, T. and Le Quilliec, G., 2014, Constitutive modeling of the densification process in silica glass under hydrostatic compression. Acta Materialia, 62, 250-257. https://doi.org/10.1016/j.actamat.2013.07.067
  13. Kim, E.J., Fei, Y. and Lee, S.K., 2018, Effect of pressure on the short-range structure and speciation of carbon in alkali silicate and aluminosilicate glasses and melts at high pressure up to 8 GPa: 13C, 27Al, 17O and 29Si solid-state NMR study. Geochimica et Cosmochimica Acta, 224, 327-343. https://doi.org/10.1016/j.gca.2018.01.006
  14. Kim, E.J., Kim, Y.-H. and Lee, S.K., 2019, Pressure-induced structural transitions in Na-Li silicate glasses under compression. Journal of Physical Chemistry C, 123, 26608-26622. https://doi.org/10.1021/acs.jpcc.9b06391
  15. Kim, E.J. and Lee, S.K., 2018, Pressure-load calibration of multi-anvil press and the thermal gradient within the sample chamber. Journal of the Mineralogical Society of Korea, 31, 161-172. https://doi.org/10.9727/jmsk.2018.31.3.161
  16. Lee, S.K., 2004, Structure of silicate glasses and melts at high pressure: Quantum chemical calculations and solid-state NMR. The Journal of Physical Chemistry B, 108, 5889-5900. https://doi.org/10.1021/jp037575d
  17. Lee, S.K., 2010, Effect of pressure on structure of oxide glasses at high pressure: Insights from solid-state NMR of quadrupolar nuclides. Solid State Nuclear Magnetic Resonance, 38, 45-57. https://doi.org/10.1016/j.ssnmr.2010.10.002
  18. Lee, S.K. and Ahn, C.W., 2014, Probing of 2 dimensional confinement-induced structural transitions in amorphous oxide thin film. Scientific Reports, 4.
  19. Lee, S.K., Cody, G.D., Fei, Y. and Mysen, B.O., 2004, Nature of polymerization and properties of silicate melts and glasses at high pressure. Geochimica et Cosmochimica Acta, 68, 4189-4200. https://doi.org/10.1016/j.gca.2004.04.002
  20. Lee, S.K., Cody, G.D. and Mysen, B.O., 2005, Structure and the extent of disorder in quaternary (Ca-Mg and Ca-Na) aluminosilicate glasses and melts. American Mineralogist, 90, 1393-1401. https://doi.org/10.2138/am.2005.1843
  21. Lee, S.K., Kim, H.-I., Kim, E.J., Mun, K.Y. and Ryu, S., 2016, Extent of disorder in magnesium aluminosilicate glasses: Insights from 27Al and 17O NMR. Journal of Physical Chemistry C, 120, 737-749. https://doi.org/10.1021/acs.jpcc.5b10799
  22. Lee, S.K., Lee, A.C. and Kweon, J.J., 2021, Probing medium-range order in oxide glasses at high pressure. The Journal of Physical Chemistry Letters, 12, 1330-1338. https://doi.org/10.1021/acs.jpclett.1c00055
  23. Lee, S.K., Lee, S.B., Park, S.Y., Yi, Y.S. and Ahn, C.W., 2009, Structure of amorphous aluminum oxide. Physical Review Letters, 103, 095501. https://doi.org/10.1103/PhysRevLett.103.095501
  24. Lee, S.K., Mosenfelder, J.L., Park, S.Y., Lee, A.C. and Asimow, P., 2020a, Configurational entropy of basaltic melts in Earth's mantle. Proceedings of the National Academy of Sciences, 117, 21938-21944. https://doi.org/10.1073/pnas.2014519117
  25. Lee, S.K., Mun, K.Y., Kim, Y.-H., Lhee, J., Okuchi, T. and Lin, J.F., 2020b, Degree of permanent densification in oxide glasses upon extreme compression up to 24 GPa at room temperature. Journal of Physical Chemistry Letters, 11, 2917-2924. https://doi.org/10.1021/acs.jpclett.0c00709
  26. Lee, S.K. and Ryu, S., 2018, Probing of triply coordinated oxygen in amorphous Al2O3. Journal of Physical Chemistry Letters, 9, 150-156. https://doi.org/10.1021/acs.jpclett.7b03027
  27. Leinenweber, K.D., Tyburczy, J.A., Sharp, T.G., Soignard, E., Diedrich, T., Petuskey, W.B., Wang, Y. and Mosenfelder, J.L., 2012, Cell assemblies for reproducible multianvil experiments (the COMPRES assemblies). American Mineralogist, 97, 353-368. https://doi.org/10.2138/am.2012.3844
  28. Liebermann, R.C., 2011, Multi-anvil, high pressure apparatus: a half-century of development and progress. High Pressure Research, 31, 493-532. https://doi.org/10.1080/08957959.2011.618698
  29. Molnar, G., Ganster, P. and Tanguy, A., 2017, Effect of composition and pressure on the shear strength of sodium silicate glasses: An atomic scale simulation study. Physical Review E, 95, 043001. https://doi.org/10.1103/PhysRevE.95.043001
  30. Mosenfelder, J.L., Deligne, N.I., Asimow, P.D. and Rossman, G.R., 2006, Hydrogen incorporation in olivine from 2-12 GPa. American Mineralogist, 91, 285-294. https://doi.org/10.2138/am.2006.1943
  31. Park, S.Y. and Lee, S.K., 2018, Probing the structure of Fe-free model basaltic glasses: A view from a solid-state 27Al and 17O NMR study of Na-Mg silicate glasses, Na2O-MgOAl2O3-SiO2 glasses, and synthetic Fe-free KLB-1 basaltic glasses. Geochimica Et Cosmochimica Acta, 238, 563-579. https://doi.org/10.1016/j.gca.2018.07.032
  32. Rouxel, T., Ji, H., Guin, J.P., Augereau, F. and Ruffle, B., 2010, Indentation deformation mechanism in glass: Densification versus shear flow. Journal of Applied Physics, 107, 094903. https://doi.org/10.1063/1.3407559
  33. Stebbins, J.F., Kroeker, S., Keun Lee, S. and Kiczenski, T.J., 2000, Quantification of five- and six-coordinated aluminum ions in aluminosilicate and fluoride-containing glasses by high-field, high-resolution 27Al NMR. Journal of NonCrystalline Solids, 275, 1-6. https://doi.org/10.1016/S0022-3093(00)00270-2
  34. Stoyanov, E., Haussermann, U. and Leinenweber, K., 2010, Large-volume multianvil cells designed for chemical synthesis at high pressures. High Pressure Research, 30, 175-189. https://doi.org/10.1080/08957950903422444
  35. Vandembroucq, D., Deschamps, T., Coussa, C., Perriot, A., Barthel, E., Champagnon, B. and Martinet, C., 2008, Density hardening plasticity and mechanical ageing of silica glass under pressure: a Raman spectroscopic study. Journal of Physics: Condensed Matter, 20, 485221. https://doi.org/10.1088/0953-8984/20/48/485221
  36. Yamazaki, D., Ito, E., Yoshino, T., Tsujino, N., Yoneda, A., Gomi, H., Vazhakuttiyakam, J., Sakurai, M., Zhang, Y., Higo, Y. and Tange, Y., 2019, High-pressure generation in the Kawai-type multianvil apparatus equipped with tungsten-carbide anvils and sintered-diamond anvils, and X-ray observation on CaSnO3 and (Mg,Fe)SiO3. Comptes Rendus Geoscience, 351, 253-259. https://doi.org/10.1016/j.crte.2018.07.004
  37. Yarger, J.L., Smith, K.H., Nieman, R.A., Diefenbacher, J., Wolf, G.H., Poe, B.T. and McMillan, P.F., 1995, Al coordination changes in high-pressure aluminosilicate liquids. Science, 270, 1964-1967. https://doi.org/10.1126/science.270.5244.1964