DOI QR코드

DOI QR Code

Simulation of the Structural Parameters of Anti-resonant Hollow-core Photonic Crystal Fibers

  • Li, Qing (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Feng, Yujun (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Sun, Yinhong (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Chang, Zhe (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Wang, Yanshan (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Peng, Wanjing (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Ma, Yi (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Tang, Chun (Institute of Applied Electronics, China Academy of Engineering Physics)
  • 투고 : 2021.11.16
  • 심사 : 2022.01.25
  • 발행 : 2022.04.25

초록

Anti-resonant hollow-core photonic crystal fiber (AR-HCF) has unique advantages, such as low nonlinearity and high damage threshold, which make it a promising candidate for high-power laser delivery at distances of tens of meters. However, due to the special structure, optical properties such as mode-field profile and bending loss of hollow-core fibers are different from those of solid-core fibers. These differences have limited the widespread use of AR-HCF in practice. In this paper we conduct numerical analysis of AR-HCFs with different structural parameters, to analyze their influences on an AR-HCF's optical properties. The simulation results show that with a 23-㎛ air-core diameter, the fundamental mode profile of an AR-HCF can well match that of the widely used Nufern's 20/400 fiber, for nearly-single-mode power delivery applications. Moreover, with the ratio of cladding capillary diameter to air-core diameter ranging from 0.6 to 0.7, the AR-HCF shows excellent optical characteristics, including low bending sensitivity while maintaining single-mode transmission at the same time. We believe these results lay the foundation for the application of AR-HCFs in the power delivery of high power fiber laser systems.

키워드

과제정보

Innovation Development Fund of CAEP (C-2021-CX20210047); Innovation Development Fund of CAEP (C-2021-CX20200030).

참고문헌

  1. R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, P. Zhou, and X. Xu, "2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression," Laser Phys. Lett. 14, 085102 (2017). https://doi.org/10.1088/1612-202X/aa760b
  2. T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, "3.5 kW bi-directionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser," Laser Phys. 28, 105101 (2018). https://doi.org/10.1088/1555-6611/aace37
  3. F. Beier, F. Moller, B. Sattler, J. Nold, A. Liem, C. Hupel, S. Kuhn, S. Hein, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tunnermann, "Experimental investigations on the TMI thresholds of low-NA Yb-doped single-mode fibers," Opt. Lett. 43, 1291-1294 (2018). https://doi.org/10.1364/OL.43.001291
  4. Y. Huang, P. Yan, Z. Wang, J. Tian, D. Li, Q. Xiao, and M. Gong, "2.19 kW narrow linewidth FBG-based MOPA configuration fiber laser," Opt. Express 27, 3136-3145 (2019). https://doi.org/10.1364/OE.27.003136
  5. H. Lin, R. Tao, C. Li, B. Wang, C. Guo, Q. Shu, P. Zhao, L. Xu, J. Wang, F. Jing, and Q. Chu, "3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability," Opt. Express 27, 9716-9724 (2019). https://doi.org/10.1364/oe.27.009716
  6. Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, B. He, and J. Zhou, "10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation," Opt. Express 24, 12063-12071 (2016). https://doi.org/10.1364/OE.24.012063
  7. P. A. Thielen, J. G. Ho, D. A. Burchman, G. D. Goodno, J. E. Rothenberg, M. G. Wickham, A. Flores, C. A. Lu, B. Pulford, C. Robin, A. D. Sanchez, D. Hult, and K. B. Rowland, "Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam," Opt. Lett. 37, 3741-3743 (2012). https://doi.org/10.1364/OL.37.003741
  8. B. Anderson, A. Flores, R. Holten, T. Ehrenreich, and I. Dajani, "Beam combining and SBS suppression in white noise and pseudo-random modulated amplifiers," Proc. SPIE 9344, 93441U (2015).
  9. Z. Chang, Y. Wang, Y. Sun, W. Peng, W. Ke, Y. Ma, R. Zhu, and C. Tang, "1.5 kW polarization-maintained Yb-doped amplifier with 13 GHz linewidth by suppressing the self-pulsing and stimulated Brillouin scattering," Appl. Opt. 58, 6419-6425 (2019). https://doi.org/10.1364/ao.58.006419
  10. M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, "1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap," Sci. Rep. 10, 629 (2020). https://doi.org/10.1038/s41598-019-57408-5
  11. S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, and S. A. Babin, "Output spectrum of Yb-doped fiber lasers," Opt. Lett. 37, 2508-2510 (2012). https://doi.org/10.1364/OL.37.002508
  12. W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, "Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source," Opt. Express 24, 8708-8717 (2016). https://doi.org/10.1364/OE.24.008708
  13. H. Lee and G. P. Agrawal, "Impact of self-phase modulation on instabilities in fiber lasers," IEEE J. Quantum Electron. 46, 1732-1738 (2010). https://doi.org/10.1109/JQE.2010.2063416
  14. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). https://doi.org/10.1126/science.285.5433.1537
  15. N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, "Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber," Opt. Lett. 39, 295-298 (2014). https://doi.org/10.1364/OL.39.000295
  16. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, "Light transmission in negative curvature hollow core fiber in extremely high material loss region," Opt. Express 21, 9514-9519 (2013). https://doi.org/10.1364/OE.21.009514
  17. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, "Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber," Opt. Lett. 36, 669-671 (2011). https://doi.org/10.1364/OL.36.000669
  18. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, "Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >35 ㎛," Opt. Express 19, 1441-1448 (2011). https://doi.org/10.1364/OE.19.001441
  19. W. Belardi and J. C. Knight, "Hollow antiresonant fibers with low bending loss," Opt. Express 22, 10091-10096 (2014). https://doi.org/10.1364/OE.22.010091
  20. H. Shen, Q. Lou, Z. Quan, X. Li, Y. Yang, X. Chen, Q. Li, G. Bai, Y. Qi, B. He, and J. Zhou, "Narrow-linewidth all-fiber amplifier with up to 3.01 kW output power based on commercial 20/400 ㎛ active fiber and counterpumped configuration," Appl. Opt. 58, 3053-3058 (2019). https://doi.org/10.1364/ao.58.003053
  21. Y. Wang, W. Ke, W. Peng, Z. Chang, Y. Feng, Y. Sun, Q. Gao, Y. Ma, R. Zhu, and C. Tang, "3 kW, 0.2 nm narrow linewidth linearly polarized all-fiber laser based on a compact MOPA structure," Laser Phys. Lett. 17, 075101 (2020). https://doi.org/10.1088/1612-202x/ab8e42
  22. P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, "1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality," Opt. Express 24, 4187-4195 (2016). https://doi.org/10.1364/OE.24.004187
  23. J. Xu, L. Huang, M. Jiang, J. Ye, P. Ma, J. Leng, J. Wu, H. Zhang, and P. Zhou, "Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output," Photonics Res. 5, 350-354 (2017). https://doi.org/10.1364/PRJ.5.000350
  24. G. P. Agrawal, "Nonlinear fiber optics," in Nonlinear Science at the Dawn of the 21st Century, P. L. Christiansen, M. P. Sorensen, and A. C. Scott, Eds. (Springer-Verlag, Germany, 2000), pp. 195-211.
  25. M. Michieletto, J. K. Lyngso, C. Jakobsen, J. Laegsgaard, O. Bang, and T. T. Alkeskjold, "Hollow-core fibers for high power pulse delivery," Opt. Express 24, 7103-7119 (2016). https://doi.org/10.1364/OE.24.007103
  26. C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, "Higher-order mode suppression in chalcogenide negative curvature fibers," Opt. Express 23, 15824-15832 (2015). https://doi.org/10.1364/OE.23.015824
  27. P. Uebel, M. C. Gunendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Menard, and P. St J. Russell, "Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes," Opt. Lett. 41, 1961-1964 (2016). https://doi.org/10.1364/OL.41.001961
  28. Shruti, R. K. Sinha, and R. Bhattacharyya, "Anti-resonant reflecting photonic crystal waveguides," in Proc. 14th OptoElectronics and Communications Conference-OECC (Hong Kong, China, Jul. 13-17, 2009), pp. 1592-1594.