DOI QR코드

DOI QR Code

Low-Noise Preamplifier Design for Underwater Electric Field Sensors using Chopper stabilized Operational Amplifiers and Multiple Matched Transistors

초퍼 연산증폭기와 다수의 정합 트랜지스터를 이용한 수중 전기장 센서용 저잡음 전치 증폭기 설계

  • 배기웅 (국방과학연구소 해양기술연구원) ;
  • 양창섭 (국방과학연구소 해양기술연구원) ;
  • 한승환 (LIG 넥스원 해양 2 연구소) ;
  • 정상명 (에이더블 테크놀러지 하드웨어개발팀) ;
  • 정현주 (국방과학연구소 해양기술연구원)
  • Received : 2022.03.14
  • Accepted : 2022.03.29
  • Published : 2022.03.31

Abstract

With advancements in underwater stealth technology for naval vessels, new sensor configurations for detecting targets have been attracting increased attention. Latest underwater mines adopt multiple sensor configurations that include electric field sensors to detect targets and to help acquire accurate ignition time. An underwater electric field sensor consists of a pair of electrodes, signal processing unit, and preamplifier. For detecting underwater electric fields, the preamplifier requires low-noise amplification at ultra-low frequency bands. In this paper, the specific requirements for low-noise preamplifiers are discussed along with the experimental results of various setups of matched transistors and chopper stabilized operational amplifiers. The results showed that noise characteristics at ultra-low frequency bands were affected significantly by the voltage noise density of the chopper amplifier and the number of matched transistors used for differential amplification. The fabricated preamplifier was operated within normal design parameters, which was verified by testing its gain, phase, and linearity.

Keywords

Acknowledgement

본 연구는 국방과학연구소가 수행하는 "50nV급 수중 전기장센서 설계 기술" 과제의 일환으로 진행되었습니다 [사업부호: 912741201].

References

  1. G. J. Webb, "Apparatus and Method for Determining Electrical Polarization of Distribution of a Vessel", U. S. Patent, 6, 512, 356, 28 Jan, 2003.
  2. Z. Wang, M. Deng, K. Chen, M. Wang, Q. Zhang, and D. Zeng, "Development and evaluation of an ultralow-noise sensor system for marine electric field measurements," Sens Actuators A, Vol. 213, pp. 70-78, 2014. https://doi.org/10.1016/j.sna.2014.03.026
  3. S. H. Cho, H. K. Jung, H. Lee, H. Rim, and S. K. Lee, "Real Time Underwater Object Detection Based on DC Resistivity Method", IEEE Trans. Geosci. Remote. Sens, Vol. 54, No. 11, pp. 6833-6842, 2016. https://doi.org/10.1109/TGRS.2016.2591619
  4. J. Kim, H. Kim, K. Han, D. You, H. Heo, Y. Kwon, D. Cho, and H. Ko, "Low-Noise Chopper-Stabilized Multi-Path Operational Amplifier with Nested Miller Compensation for High-Precision Sensors", Appl. Sci., Vol. 10, No. 1, p. 281(1)-281(12), 2020. https://doi.org/10.3390/app10010281
  5. G. B. Havsgard, H. R. Jensen, A. Kurrasch, H. Jones, P. Austin, and A. Thompson, "Low noise Ag/AgCl electric field sensor system for marine CSEM and MT applications", 2011 Int. MARELEC conf., 2011.
  6. S. Constable, "Review paper: Instrumentation for marine magnetotelluric and controlled source electromagnetic sounding", GeoPhy. Prosp., Vol. 61, pp. 505-532, 2013. https://doi.org/10.1111/j.1365-2478.2012.01117.x
  7. G. Schultz, J. Miller, F. Shubitidze, and R. Evans, "Underwater Controlled Source Electromagnetic Sensing: Locating and Characterizing Compact Seabed Targets", IEEE Oceans, pp. 1-9, 2012.
  8. W. Luo, H. Dong, J. Ge, H. Liu, B. Bai, C. Zhang, Z. Yuan, J. Zhu, H. Zhang, "Design and Characterization of an Ultralow-Potential Drift ag/AgCl Electric Field Sensor", Chi. Cont. Conf., pp. 10263-10266, 2018.
  9. D. Pozar, Microwave Engineering, Wiley, MA, pp. 495-496, 2005.
  10. http://www.analog.com/en/analog-dialogue/articles/low-noise-inamp-nanovolt-sensitivity.html (retrieved on Mar. 28, 2022).
  11. R. Wei, Z. Liu, and R. Zhu, "Low noise chopper-stabilized instrumentation amplifier with a ripple reduction loop", Ana. Int. Circ. Sig. Proc., Vol. 96, No. 3, pp. 521-529, 2018. https://doi.org/10.1007/s10470-018-1214-5