DOI QR코드

DOI QR Code

Blooming Time of Tilia amurensis Rupr. in Mountainous Area and Prediction of its Blooming Progress Using Growing Degree Day Model

산악 지역에서의 피나무(Tilia amurensis Rupr.) 개화시기와 성장온일도를 이용한 개화 진행 예측

  • Kim, Min-Jung (Agricultural Science and Technology Research Institute, Andong National University) ;
  • Son, Minwong (Department of Plant Medicals, Andong National University) ;
  • Lee, Juhyeok (Department of Plant Medicals, Andong National University) ;
  • Jung, Chuleui (Agricultural Science and Technology Research Institute, Andong National University)
  • 김민중 (안동대학교 농업과학기술연구소) ;
  • 손민웅 (안동대학교 식물의학과) ;
  • 이주혁 (안동대학교 식물의학과) ;
  • 정철의 (안동대학교 농업과학기술연구소)
  • Received : 2021.11.09
  • Accepted : 2022.02.25
  • Published : 2022.03.30

Abstract

Tilia amurensis is an important honey plant. As T. amurensis mainly distributes mountainous area with various elevations in Korea, accurate prediction of blooming time at the different elevation would benefit forest beekeepers. In this study, we measured time-dependent blooming progress of T. amurensis in Mt. Gariwang area ranging from 500-1500m. Additionally we collected blooming data from web and published literatures and estimated the variation of blooming time relative to the geographic locations. Flowers began to bloom from July 6 to July 22 with full blooming on July 14 in location where elevation is 638m in Mt. G ariwang area in 2021. Based on these databases, a growing degree day (G DD) model was developed for prediction of T. amurensis blooming progress using average daily temperatures. Using the starting date of G DD accumulation of January 1 and base temperature of 5 ℃, blooming period ranging from 10% to 90% of cumulative blooming rate was estimated as 860-1198 degree days (DD). This corresponded to the beginning to the end of July in Mt. Gariwaning area in 2021. This model could explain the phenological variations of T. amurensis flower blooming possibly affected by elevation within geographic area, latitude or year relative to the climate change, and aid forest beekeepers for better timing of nectar foraging by honey bees.

본 연구는 국내 중요 밀원식물인 피나무가 주로 자생하는 산악 지역에서 개화시기를 예측하기 위해 수행되었다. 이를 위해 가리왕산 일대 해발 638m 지점 기준목에서 개화 진행을 모니터링 하고, 고도별 개화율을 관찰하였다. 또한 문헌자료, 웹자료, 개화 판별이 가능한 표본자료들을 수집하였다. 이 자료들을 이용하여 고도와 위도에 따른 개화기 변화를 확인하였다. 또한 누적 GDD를 이용하여 누적 개화율 모델을 개발하였다. GDD 계산은 5 ℃의 기준온도와 일별 최고, 최저 온도를 이용하였다. 일일 온일도를 1월 1일부터 누적할 경우 피나무 개화기는 860~1198 DD로 추정되었다. 이 결과는 산림양봉이 이루어지는 산악지역에서 개화기 예측과 채밀 가능기간을 추정에 도움을 줄 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 산림청(한국임업진흥원) 산림과학기술연구개발사업'(2021362E10-2223-BD01)'의 지원에 의하여 이루어진 것입니다. 조사를 도와주신 자연정원 권박사님께 감사드립니다.

References

  1. Andreini, L., I. G. de Cortazar-Atauri, I. Chuine, R. Viti, S. Bartolini, D. Ruiz, J. A. Campoy, J. M. Legave, J.-M. Audergon, and P. Bertuzzi, 2014: Understanding dormancy release in apricot flower buds (Prunus armeniaca L.) using several process-based phenological models. Agricultural and Forest Meteorology 184(15), 210-219. https://doi.org/10.1016/j.agrformet.2013.10.005
  2. Batra, S. W. T., 1985: Red maple (Acer rubrum L.), an important early spring food resource for honey bees and other insects. Journal of the Kansas Entomological Society 58(1), 169-172.
  3. Cooke, J. E. K., M. E. Eriksson, and O. Junttila, 2012: The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant, Cell and Environment 35, 1707-1728. https://doi.org/10.1111/j.1365-3040.2012.02552.x
  4. Han, J., S.-H. Kim, M.-S. Kang, C.-S. Kim, and E.-S. Baik, 2010: Flowering and nectar secretion characteristics of Tilia amurensis Rupr. and Tilia manshurica Rupr. et Max. Journal of Apiculture 25(3), 217-221.
  5. Johnson, I. R., and J. H. M. Thornley, 1985: Temperature dependence of plant and crop processes. Annals of Botany 55(1), 1-24. https://doi.org/10.1093/oxfordjournals.aob.a086868
  6. Kim, J.-H., and J. I. Yun, 2008: On mapping growing degree-days (GDD) from monthly digital climatic surfaces for South Korea. Korean Journal of Agricultural and Forest Meteorology 10(1), 1-8. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2008.10.1.001
  7. Kim, K., and Y. Chung, 1986: A study on the distribution of Genus Tilia. Journal of Apiculture 1(1), 24-45. (in Korean with English abstract)
  8. Kim, K., M.-Y. Lee, Y.-S. Choi, E.-J. Kang, H.-G. Park, B.-S. Park, O. Frunze, J.-G. Kim, S. M. Han, S. O. Woo, S. G. Kim, H. Y. Kim, S.-K. Kim, and D. Kim, 2021a: Status and environmental factors of the annual production of acacia honey from the false acacia (Robinia pseudoacacia) in South Korea. Journal of Apiculture 36(1), 11-16. (in Korean with English abstract) https://doi.org/10.17519/apiculture.2021.04.36.1.11
  9. Kim, M.-S, H. Kim, S.-D. Kim, S.-J. Park, J.-H. Song, and S.-H. Kim, 2015: Pollinator visit, characteristics of secreted nectar and analysis of nectar sugar and amino acid contents in flower of Dendropanax morbifera Lev. Journal of Apiculture 30(4), 307-314. (in Korean with English abstract) https://doi.org/10.17519/apiculture.2015.11.30.4.307
  10. Kim, M. S., S. H. Kim, J. Han, and J. S. Kim, 2012: Analysis of secretion quantity and sugar composition of nectar from Tilia amurensis Rupr. Journal of Apiculture 27(1), 79-85.
  11. Kim, S., T. K. Kim, S. Yoon, K. Jang, H. Lim, W. Y. Lee, M. Won, J.-H. Lim, and H. S. Kim, 2021b: Recent changes in bloom dates of Robinia pseudoacacia and bloom date predictions using a process-based model in South Korea. Journal of Korean Society of Forest Science 110(3), 322-340. (in Korean with English abstract) https://doi.org/10.14578/JKFS.2021.110.3.322
  12. Kim, S. H., A. Lee, H. Y. Kwon, U. Lee, and M. S. Kim, 2017: Analysis of flowering and nectar characteristics of major four chestnut cultivars (Castanea spp.). Journal of Apiculture 32(3), 237-246. (in Korean with English abstract) https://doi.org/10.17519/apiculture.2017.09.32.3.237
  13. Kim, Y., and S. Choi, 1988: Diurnal activity of the honeybees on the blosoms of Tilia amurensis Rupr. Journal of Apiculture 3(2), 11-15. (in Korean with English abstract)
  14. Kim, Y. K., J. H. Song, M. S. Park, and M. S. Kim, 2020: Analysis of nectar characteristics of Idesia polycarpa. Journal of Korean Society of Forest Science 109(4), 512-520. (in Korean with English abstract) https://doi.org/10.14578/JKFS.2020.109.4.512
  15. Lee, H. S., J.-S. Lee, and B. H. Kwack, 1997: Effect of varied elevations of Kangwon province on growth and flowering of Hibiscus syriacus. The Korean Institute of Landscape Architecture 25(3), 177-185. (in Korean with English abstract)
  16. Lee, M., 1988: Characteristics of leaf morphology in the natural populations of a honey plant, Tilia amurensis Rupr. Journal of Apiculture 13(1), 9-14. (in Korean with English abstract)
  17. Lee, Y.-H., 2013: Economic potential and policy implications of agroforestry from US agroforestry cases. Korean Journal of Forest Economics 20(1), 47-58. (in Korean with English abstract)
  18. Miklos, F., E. Amnon, R. Lisa, W. Shiow, and N. Helen, 1995: Bud dormancy in perennial fruit trees: Physiological basis for dormancy induction, maintenance, and release. HortScience 32(4), 623-629. https://doi.org/10.21273/hortsci.32.4.623
  19. Murakami, S., C. Ishii, Z. Inaba, and S. Nakamura, 2009: Forecasting blooming date based on developmental rate of the ecodormancy stage in 'Kawazu-zakura' (Prunus lannesiana Wils. 'Kawazu-zakura') cherry trees. Journal of Science and High Technology in Agriculture 21, 24-28. https://doi.org/10.2525/shita.21.24
  20. Min, B. M., and J. K. Choi, 1993: A phenological study of several woody plants. The Korean Journal of Ecology 16(4), 477-487. (in Korean with English abstract)
  21. Park, M. S., and Y.-C. Youn, 2012: Traditional knowledge of Korean native beekeeping and sustainable forest management. Forest Policy and Economics 15, 37-45. https://doi.org/10.1016/j.forpol.2011.12.003
  22. Shafer, S. L., P. J. Bartlein, and R. S. Thompson, 2001: Potential changes in the distributions of western North America tree and shrub taxa under future climate scenarios. Ecosystems 4, 200-215. https://doi.org/10.1007/s10021-001-0004-5
  23. Sung, K.-C., and J.-W. Seo, 2004: Income enhancement measures of mountain area by using agroforestry. Korean Journal of Forest Economics 12(1), 32-45. (in Korean with English abstract)
  24. Szabo, B., E. Vincze, and B. Czucz, 2016: Flowering phenological changes in relation to climate change in Hungary. International Journal of Biometeorology 60, 1347-1356. https://doi.org/10.1007/s00484-015-1128-1
  25. Sykes, M. T., I. C. Prentice, and W. Cramer, 1996: A bioclimatic model for the potential distributions of north European tree species under present and future climates. Journal of Biogeography 23, 203-233. https://doi.org/10.1046/j.1365-2699.1996.d01-221.x
  26. Thompson, R., and R. M. Clark, 2006: Spatiotemporal modelling and assessment of within-species phenological variability using thermal time methods. International Journal of Biometeorology 50, 312- 322. https://doi.org/10.1007/s00484-005-0017-4
  27. Woo, K.-S., H. J. Choe, and H.-J. Kim, 2003: A report on the occurrence of yellow locust midge Obolodiplosis robiniae (Haldeman, 1987) from Korea. Korean Journal of Applied Entomology 42(1), 77-79. (in Korean with English abstract)
  28. Yang, S., J. Logan, and D. L. Coffey, 1995: Mathematical formulae for calculating the base temperature for growing degree days. Agricultural and Forest Meteorology 74, 61-74. https://doi.org/10.1016/0168-1923(94)02185-M
  29. Youn, Y., and K. Ohba, 1990: In vitro plantlet regeneration from axillary buds of Tilia amurensis mature trees and clonal variation in tissue culturability. Journal of Korean Forestry Society 79(2), 109-114.