DOI QR코드

DOI QR Code

Efficient method for generating homozygous embryonic stem cells in mice

  • Kim, Bitnara (Department of Biomedical Science, College of Life Science, CHA University) ;
  • So, Seongjun (Department of Biomedical Science, College of Life Science, CHA University) ;
  • Choi, Jiwan (Center for Embryo and Stem Cell Research, CHA Advanced Research Institute, CHA University) ;
  • Kang, Eunju (Department of Biomedical Science, College of Life Science, CHA University) ;
  • Lee, Yeonmi (Department of Biomedical Science, College of Life Science, CHA University)
  • Received : 2022.03.18
  • Accepted : 2022.03.22
  • Published : 2022.03.31

Abstract

Parthenogenesis is maternally uniparental reproduction through the embryonic development of oocytes without fertilization. Artificial activation of mature oocytes could generate homozygous haploid embryos with the extrusion of the second polar body. However, the haploid embryos showed low embryo development in preimplantation embryos. In this study, we investigated whether the electronic fusion of the haploid embryos could enhance embryo development and ESC establishment in mice. Haploid embryos showed the developmental delay from 4-cell to the blastocyst stage. The haploid blastomeres of the 2-cell stage were fused electronically, resulting in that the fused embryos showed a significantly higher rate of blastocysts compared to non-fused haploid embryos (55% vs. 37%). Further, the embryonic stem cells (ESCs) derived from the fused embryos were confirmed to be diploid. The rate of ESC establishment in fused embryos was significantly higher compared to non-fused ones. Based on the results, we concluded that the electronic fusion of haploid embryos could be efficient to generate homozygous ESCs.

Keywords

Acknowledgement

This work has been supported by the National Research Foundation of Korea (grant nos. NRF-2018R1A2B3001244 and NRF-2021R1I1A1A01049705).

References

  1. Bai M, Wu Y, Li J. 2016. Generation and application of mammalian haploid embryonic stem cells. J. Intern. Med. 280:236-245. https://doi.org/10.1111/joim.12503
  2. Balakier H and Tarkowski AK. 1976. Diploid parthenogenetic mouse embryos produced by heat-shock and Cytochalasin B. J. Embryol. Exp. Morphol. 35:25-39.
  3. Daughtry B and Mitalipov S. 2014. Concise review: parthenote stem cells for regenerative medicine: genetic, epigenetic, and developmental features. Stem Cells Transl. Med. 3:290-298. https://doi.org/10.5966/sctm.2013-0127
  4. Didie M, Christalla P, Rubart M, Muppala V, Doker S, Unsold B, El-Armouche A, Rau T, Eschenhagen T, Schwoerer AP, Ehmke H, Schumacher U, Fuchs S, Lange C, Becker A, Tao W, Scherschel JA, Soonpaa MH, Yang T, Lin Q, Zenke M, Han DW, Scholer HR, Rudolph C, Steinemann D, Schlegelberger B, Kattman S, Witty A, Keller G, Field LJ, Zimmermann WH. 2013. Parthenogenetic stem cells for tissue-engineered heart repair. J. Clin. Invest. 123:1285-1298. https://doi.org/10.1172/JCI66854
  5. Ding C, Huang S, Qi Q, Fu R, Zhu W, Cai B, Hong P, Liu Z, Gu T, Zeng Y, Wang J, Xu Y, Zhao X, Zhou Q, Zhou C. 2015. Derivation of a homozygous human androgenetic embryonic stem cell line. Stem Cells Dev. 24:2307-2316. https://doi.org/10.1089/scd.2015.0031
  6. Gertsenstein M. 2015. Mouse embryos' fusion for the tetraploid complementation assay. Methods Mol. Biol. 1313:41-59. https://doi.org/10.1007/978-1-4939-2703-6_3
  7. Jung NH, Kim SH, Kim DS, Yoon JT. 2020. Study on the in-vitro culture method for normal embryonic cell development of porcine parthenogenetic embryos. J. Anim. Reprod. Biotechnol. 35:94-101. https://doi.org/10.12750/JARB.35.1.94
  8. Kang E, Wu G, Ma H, Li Y, Tippner-Hedges R, Tachibana M, Sparman M, Wolf DP, Scholer HR, Mitalipov S. 2014. Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos. Nature 509:101-104. (Correcction published 2014, Nature, 516, p. 276) https://doi.org/10.1038/nature13134
  9. Kaufman MH, Robertson EJ, Handyside AH, Evans MJ. 1983. Establishment of pluripotential cell lines from haploid mouse embryos. J. Embryol. Exp. Morphol. 73:249-261.
  10. Kaufman MH. 1978. Chromosome analysis of early postimplantation presumptive haploid parthenogenetic mouse embryos. J. Embryol. Exp. Morphol. 45:85-91.
  11. Kaufman MH and Sachs L. 1976. Complete preimplantation development in culture of parthenogenetic mouse embryos. J. Embryol. Exp. Morphol. 35:179-190.
  12. Kim CJ and Lee KB. 2019. Effect of paternal DNA damage on paternal DNA degradation and early embryonic development in mouse embryo: supporting evidence by gammaH2AX expression. J. Anim. Reprod. Biotechnol. 34:197-204. https://doi.org/10.12750/JARB.34.3.197
  13. Latham KE, Akutsu H, Patel B, Yanagimachi R. 2002. Comparison of gene expression during preimplantation development between diploid and haploid mouse embryos. Biol. Reprod. 67:386-392. https://doi.org/10.1095/biolreprod67.2.386
  14. Lee Y, Trout A, Marti-Gutierrez N, Kang S, Xie P, Mikhalchenko A, Kim B, Choi J, So S, Han J, Xu J, Koski A, Ma H, Yoon JD, Van Dyken C, Darby H, Liang D, Li Y, Tippner-Hedges R, Xu F, Amato P, Palermo GD, Mitalipov S, Kang E. 2022. Haploidy in somatic cells is induced by mature oocytes in mice. Commun. Biol. 5:95. https://doi.org/10.1038/s42003-022-03040-5
  15. Lee Y and Kang E. 2019. Stem cells and reproduction. BMB Rep. 52:482-489. https://doi.org/10.5483/bmbrep.2019.52.8.141
  16. Lee Y and Kang E. 2021. Hormone induced recipients for embryo transfer in mice. J. Anim. Reprod. Biotechnol. 36:247-252. https://doi.org/10.12750/JARB.36.4.247
  17. McGrath J and Solter D. 1984. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179-183. https://doi.org/10.1016/0092-8674(84)90313-1
  18. Mitalipov SM, Nusser KD, Wolf DP. 2001. Parthenogenetic activation of rhesus monkey oocytes and reconstructed embryos. Biol. Reprod. 65:253-259. https://doi.org/10.1095/biolreprod65.1.253
  19. Sagi I, Chia G, Golan-Lev T, Peretz M, Weissbein U, Sui L, Sauer MV, Yanuka O, Egli D, Benvenisty N. 2016. Derivation and differentiation of haploid human embryonic stem cells. Nature 532:107-111. https://doi.org/10.1038/nature17408
  20. So S, Karagozlu MZ, Lee Y, Kang E. 2020. Fasudil increases the establishment of somatic cell nuclear transfer embryonic stem cells in mouse. J. Anim. Reprod. Biotechnol. 35:21-27. https://doi.org/10.12750/JARB.35.1.21
  21. Tarkowski AK, Witkowska A, Nowicka J. 1970. Experimental partheonogenesis in the mouse. Nature 226:162-165. https://doi.org/10.1038/226162a0
  22. Tateno H, Akutsu H, Kamiguchi Y, Latham KE, Yanagimachi R. 2003. Inability of mature oocytes to create functional haploid genomes from somatic cell nuclei. Fertil. Steril. 79:216-218. https://doi.org/10.1016/S0015-0282(02)04537-5
  23. Wei Y, Yang CR, Zhao ZA. 2022. Viable offspring derived from single unfertilized mammalian oocytes. Proc. Natl. Acad. Sci. U. S. A. 119:e2115248119. https://doi.org/10.1073/pnas.2115248119
  24. Witkowska A. 1973. Parthenogenetic development of mouse embryos in vivo. I. Preimplantation development. J. Embryol. Exp. Morphol. 30:519-545.
  25. Wutz A. 2014. Haploid mouse embryonic stem cells: rapid genetic screening and germline transmission. Annu. Rev. Cell Dev. Biol. 30:705-722. https://doi.org/10.1146/annurev-cellbio-100913-012920