DOI QR코드

DOI QR Code

T Cell Immune Responses against SARS-CoV-2 in the With Corona Era

  • Ji-Eun, Oh (Department of Biomedical Laboratory Science, Far East University)
  • 투고 : 2022.10.24
  • 심사 : 2022.11.17
  • 발행 : 2022.12.31

초록

After more than two years of efforts to end the corona pandemic, a gradual recovery is starting in countries with high vaccination rates. Easing public health policies for a full-fledged post-corona era, such as lifting the mandatory use of outdoor mask and quarantine measures in entry have been considered in Korea. However, the continuous emergence of new variants of SARS-CoV-2 and limitations in vaccine efficacy still remain challenging. Fortunately, T cells and memory T cells, which are key components of adaptive immunity appear to contribute substantially in COVID-19 control. SARS-CoV-2 specific CD4+/CD8+ T cells are induced by natural infection or vaccination, and rapid induction and activation of T cells is mainly associated with viral clearance and attenuated clinical severity. In addition, T cell responses induced by recognition of a wide range of epitopes were minimally affected and conserved against the highly infectious subsets of omicron variants. Polyfunctional SARS-CoV-2 specific T cell memory including stem cell-like memory T cells were also developed in COVID-19 convalescent patients, suggesting long lasting protective T cell immunity. Thus, a robust T-cell immune response appears to serve as a reliable and long-term component of host protection in the context of reduced efficacy of humoral immunity and persistent mutations and/or immune escape.

키워드

참고문헌

  1. Aleem A, Akbar Samad AB, Slenker AK. Emerging Variants of SARS-CoV-2 And Novel Therapeutics Against Coronavirus (COVID-19). 2022. StatPearls Publishing (Internet).
  2. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl Med. 2021. 384: 403-416. http://doi:10.1056/NEJMoa2035389
  3. Bange EM, Han NA, Wileyto P, et al. CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nat Med. 2021. 27: 1280-1289. http://doi:10.1038/s41591-021-01386-7
  4. Bergamaschi L, Mescia F, Turner L, et al. Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity. 2021. 54: 1257-1275. http://doi:10.1016/j.immuni.2021.05.010
  5. Bertoletti A, Le Bert N, Qui M, Tan AT. SARS-CoV-2-specific T cells in infection and vaccination. Cell Mol Immunol. 2021. 18: 2307-2312. http://doi:10.1038/s41423-021-00743-3
  6. Bonifacius A, Tischer-Zimmermann S, Dragon AC, et al. COVID-19 immune signatures reveal stable antiviral T cell function despite declining humoral responses. Immunity. 2021. 54: 340-354. http://doi:10.1016/j.immuni.2021.01.008
  7. Breton G, Mendoza P, Hagglof T, et al. Persistent cellular immunity to SARS-CoV-2 infection. J Exp Med. 2021. 218: e20202515. http://doi:10.1084/jem.20202515
  8. Brouwer P, Caniels TG, van der Straten K, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020. 369: 643-650. http://doi:10.1126/science.abc5902
  9. Callow KA, Parry HF, Sergeant M, Tyrrell DA. The time course of the immune response to experimental coronavirus infection of man. Epidemiol Infect. 1990. 105: 435-446. https://doi:10.1017/s0950268800048019
  10. Cao Y, Yisimayi A, Jian F, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 2022. 608: 593-602. http://doi:10.1038/s41586-022-04980-y
  11. Castro Dopico X, Ols S, Lore K, Karlsson Hedestam GB. Immunity to SARS-CoV-2 induced by infection or vaccination. J Intern Med. 2022. 291: 32-50. http://doi:10.1111/joim.13372
  12. Choi SJ, Kim DU, Noh JY, et al. T cell epitopes in SARS-CoV-2 proteins are substantially conserved in the Omicron variant. Cell Mol Immunol. 2022. 19: 447-448. http://doi:10.1038/s41423-022-00838-5
  13. Corbett KS, Flynn B, Foulds KE, et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med. 2020. 383: 1544-1555. http://doi:10.1056/NEJMoa2024671
  14. Cromer D, Steain M, Reynaldi A, et al. Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis. The Lancet. Microbe. 2022. 3: e52-e61. http://doi:10.1016/S2666-5247(21)00267-6
  15. Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021. 371: eabf4063. http://doi:10.1126/science.abf4063
  16. de Silva TI, Liu G, Lindsey BB, et al. The impact of viral mutations on recognition by SARS-CoV-2 specific T cells. iScience. 2021. 24: 103353-103368. http://doi:10.1016/j.isci.2021.103353
  17. Doria-Rose N, Suthar MS, Makowski M, et al. mRNA-1273 Study Group. Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. N Engl J Med. 2021. 384: 2259-2261. http://doi:10.1056/NEJMc2103916
  18. Dowell AC, Butler MS, Jinks E, et al. Children develop robust and sustained cross-reactive spike-specific immune responses to SARS-CoV-2 infection. Nat Immunol. 2022. 23: 40-49. http://doi:10.1038/s41590-021-01089-8
  19. Ferguson N, Ghani A, Hinsley W, Volz E. Report 50: Hospitalisation Risk for Omicron Cases in England (Imperial College London, 2021). Retrieved from https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-50-severity-omicron.
  20. Ferretti AP, Kula T, Wang Y, et al. Unbiased Screens Show CD8+ T Cells of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside the Spike Protein. Immunity. 2020. 53: 1095-1107. http://doi:10.1016/j.immuni.2020.10.006
  21. Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J, Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect. 2022. 28: 202-221. http://doi:10.1016/j.cmi.2021.10.005
  22. Galani IE, Rovina N, Lampropoulou V, et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat Immunol. 2021. 22: 32-40. http://doi:10.1038/s41590-020-00840-x
  23. Gao Y, Cai C, Grifoni A, et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nat Med. 2022. 28: 472-476. http://doi:10.1038/s41591-022-01700-x
  24. Garcia-Beltran WF, Lam EC, St Denis K, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. 2021. 184: 2372-2383. https://doi:10.1016/j.cell.2021.03.013
  25. Geers D, Shamier MC, Bogers S, et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci Immunol. 2021. 6: eabj1750. http://doi:10.1126/sciimmunol.abj1750
  26. Geurtsvan Kessel CH, Geers D, Schmitz KS, et al. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci Immunol. 2022. 7: eabo2202. http://doi:10.1126/sciimmunol.abo2202
  27. Goel RR, Painter MM, Apostolidis SA, et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science. 2021. 374: abm0829. https://doi:10.1126/science.abm08297
  28. Grifoni A, Sidney J, Vita R, et al. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell host & microbe. 2021. 29: 1076-1092. http://doi:10.1016/j.chom.2021.05.010
  29. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020. 181: 1489-1501. http://doi:10.1016/j.cell.2020.05.015
  30. Gulati K, Prendecki M, Clarke C, Willicombe M, McAdoo S. COVID-19 Reinfection in a Patient Receiving Immunosuppressive Treatment for Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Arthritis Rheumatol. 2021. 73: 1091-1092. http://doi:10.1002/art.41671
  31. Hamady A, Lee J, Loboda ZA. Waning antibody responses in COVID-19: what can we learn from the analysis of other coronaviruses? Infection. 2022. 50: 11-25. http://doi:10.1007/s15010-021-01664-z
  32. Henss L, Scholz T, von Rhein C, Wieters I, Borgans F, Eberhardt FJ. Analysis of Humoral Immune Responses in Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J Infect Dis. 2021. 223: 56-61. http://doi:10.1093/infdis/jiaa680
  33. Ibarrondo FJ, Fulcher JA, Goodman-Meza D, et al. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. N Engl J Med. 2020. 383: 1085-1087. https://doi:10.1056/NEJMc2025179
  34. Jeong HW, Kim JM, Jung MK, et al. Enhanced antibody responses in fully vaccinated individuals against pan-SARS-CoV-2 variants following Omicron breakthrough infection. Cell Reports Med. 2022. 3: 100764-1007800. http://doi:10.1016/j.xcrm.2022.100764
  35. Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature. 2020. 584: 115-119. http://doi:10.1038/s41586-020-2380-z
  36. Jung JH, Rha MS, Sa M, et al. SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stem cell-like memory T cells. Nat Commun. 2021. 12: 4043-4054. http://doi:10.1038/s41467-021-24377-1
  37. Jung MK, Jeong SD, Noh JY, et al. BNT162b2-induced memory T cells respond to the Omicron variant with preserved poly-functionality. Nat Microbiol. 2022. 7: 909-917. http://doi:10.1038/s41564-022-01123-x
  38. Kalimuddin S, Tham CYL, Qui M, et al. Early T cell and binding antibody responses are associated with COVID-19 RNA vaccine efficacy onset. Med (NY). 2021. 2: 682-688. http://doi:10.1016/j.medj.2021.04.003
  39. Kaur SP, Gupta V. COVID-19 Vaccine: a comprehensive status report. Virus Res. 2020. 288: 198114-198125. https://doi:10.1016/j.virusres.2020.198114
  40. Keeton R, Tincho MB, Ngomti A, et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature. 2022. 603: 488-492. http://doi:10.1038/s41586-022-04460-3
  41. Kent SJ, Khoury DS, Reynaldi A, et al. Disentangling the relative importance of T cell responses in COVID-19: leading actors or supporting cast?. Nat Rev Immunol. 2022. 22: 387-397. http://doi:10.1038/s41577-022-00716-1
  42. Khosroshahi ML, Rokni M, Mokhtari T, Noorbakhsh F. Immunology, immunopathogenesis and immunotherapeutics of COVID-19; an overview. Int Immunopharmacol. 2021. 93: 107364-107378. http://doi:10.1016/j.intimp.2020.107364
  43. Kim EJ, Lee D. Coronaviruses: SARS, MERS and COVID-19. Korean J Clin Lab Sci. 2020. 52: 297-309. http://doi.org/10.15324/kjcls.2020.52.4.297
  44. Kreutmair S, Unger S, Nunez NG, et al. Distinct immunological signatures discriminate severe COVID-19 from non-SARS-CoV-2-driven critical pneumonia. Immunity. 2021. 54: 1578-1593. http://doi:10.1016/j.immuni.2021.05.002
  45. Kudlay D, Kofiadi I, Khaitov M. Peculiarities of the T Cell Immune Response in COVID-19. Vaccines. 2022. 10: 242-257. http://doi:10.3390/vaccines10020242
  46. Kustin T, Harel N, Finkel U, et al. Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals. Nat Med. 2021. 27: 1379-1384. https://doi:10.1038/s41591-021-01413-7
  47. Le Bert N, Clapham HE, Tan AT, et al. Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J Exp Med. 2021. 218: e20202617. http://doi:10.1084/jem.20202617
  48. Le Bert N, Tan AT, Kunasegaran K, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020. 584: 457-462. http://doi:10.1038/s41586-020-2550-z
  49. Lee CG, Lee D. Comparison of COVID-19 Vaccines Introduced in Korea [Internet]. Biomedical Science Letters. 2022. 28: 67-82. http://dx.doi.org/10.15616/bsl.2022.28.2.67
  50. Logunov DY, Dolzhikova IV, Shcheblyakov D, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021. 397: 671-681. http://doi:10.1016/S0140-6736(21)00234-8
  51. Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020. 26: 845-848. http://doi:10.1038/s41591-020-0897-1 (Long, 2020a)
  52. Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020. 26: 1200-1204. http://doi:10.1038/s41591-020-0965-6 (Long, 2020b)
  53. Lou B, Li TD, Zheng SF, et al. Serology characteristics of SARSCoV-2 infection after exposure and post-symptom onset. Eur Respir J. 2020. 56: 2000763-2000772. http://doi:10.1183/13993003.00763-2020
  54. Lu R, Zhao X, Li J, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020. 2395: 565-574. https://doi:10.1016/S0140-6736(20)30251-8
  55. Mazzoni A, Di Lauria N, Maggi L, et al. First-dose mRNA vaccination is sufficient to reactivate immunological memory to SARS-CoV-2 in subjects who have recovered from COVID19. J Clin Invest. 2021. 131: e149150. http://doi:10.1172/JCI149150
  56. McMahan K, Yu J, Mercado NB, et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 2021. 590: 630-634. http://doi:10.1038/s41586-020-03041-6
  57. McMahan K, Yu J, Mercado NB, et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 2021. 590: 630-634. http://doi:10.1038/s41586-020-03041-6
  58. Meckiff BJ, Ramirez-Suastegui C, Fajardo V, et al. Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive CD4+ T cells in COVID-19. Cell. 2020. 183: 1340-1353. http://doi:10.1016/j.cell.2020.10.001
  59. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London, England). 2020. 395: 1033-1034. http://doi:10.1016/S0140-6736(20)30628-0
  60. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020. 20: 355-362. http://doi:10.1038/s41577-020-0331-4
  61. Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol. 2022. 23: 186-193. http://doi:10.1038/s41590-021-01122-w
  62. Murphy K, Weaver C. Janeway's immunobiology. 2016. New York and London. Garland Science.
  63. Naaber P, Tserel L, Kangro K, et al. Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal prospective study. Lancet Reg Health Eur. 2021. 10: 100208-100216. http://doi:10.1016/j.lanepe.2021.100208
  64. Ng KW, Faulkner N, Cornish GH, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science. 2020. 370: 1339-1343. http://doi:10.1126/science.abe1107
  65. Notarbartolo S, Ranzani V, Bandera A, et al. Integrated longitudinal immunophenotypic, transcriptional and repertoire analyses delineate immune responses in COVID-19 patients. Science Immunology. 2021. 6: eabg5021. http://doi:10.1126/sciimmunol.abg5021
  66. Painter MM, Mathew D, Goel RR, et al. Rapid induction of antigen-specific CD4+ T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity. 2021. 54: 2133-2142. http://doi:10.1016/j.immuni.2021.08.001
  67. Peng Y, Mentzer AJ, Liu G, et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol. 2020. 21: 1336-1345. http://doi:10.1038/s41590-020-0782-6
  68. Pierce CA, Sy S, Galen B, et al. Natural mucosal barriers and COVID-19 in children. JCI Insight. 2021. 6: e148694. http://doi:10.1172/jci.insight.148694
  69. Piot P, Larson HJ, O'Brien KL, et al. Immunization: vital progress, unfinished agenda. Nature. 2019. 575: 119-129. http://doi:10.1038/s41586-019-1656-7
  70. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020. 383: 2603-2615. http://doi:10.1056/NEJMoa2034577
  71. Rahimi A, Mirzazadeh A, Tavakolpour S. Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection. Genomics. 2021. 113: 1221-1232. https://doi:10.1016/j.ygeno.2020.09.059
  72. Robbiani DF, Gaebler C, Muecksch F, et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 2020. 584: 437-442. http://doi:10.1038/s41586-020-2456-9
  73. Rodda LB, Netland J, Shehata L, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021. 184: 169-183. http://doi:10.1016/j.cell.2020.11.029
  74. Rodrigues PRS, Alrubayyi A, Pring E, et al. Innate immunology in COVID-19-a living review. Part II: dysregulated inflammation drives immunopathology. Oxf Open Immunol. 2020. 1: iqaa005. http://doi:10.1093/oxfimm/iqaa005
  75. Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell. 2020. 183: 996-1012. http://doi:10.1016/j.cell.2020.09.038
  76. Sa Ribero M, Jouvenet N, Dreux M, Nisole S. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog. 2020. 16: e1008737. http://doi:10.1371/journal.ppat.1008737
  77. Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol. 2021. 21: 475-484. http://doi:10.1038/s41577-021-00578-z
  78. Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol. 2021. 21: 475-484. http://doi:10.1038/s41577-021-00578-z
  79. Sahin U, Muik A, Derhovanessian E, et al. BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 2020. 586: 594-599. http://doi:10.1038/s41586-020-2814-7
  80. Sahin U, Muik A, Vogler I, et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature. 2021. 595: 572-577. http://doi:10.1038/s41586-021-03653-6
  81. Saxena SK, Kumar S, Ansari S, et al. Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern and its global perspective. J Med Virol. 2022. 94: 1738-1744. http://doi:10.1002/jmv.27524
  82. Sekine T, Perez-Potti A, Rivera-Ballesteros O, et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell. 2020. 183: 158-168. http://doi:10.1016/j.cell.2020.08.017
  83. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021. 184: 861-880. http://doi:10.1016/j.cell.2021.01.007
  84. Sette A, Crotty S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunol Rev. 2022. 310: 27-46. http://doi:10.1111/imr.13089
  85. Shah M, Woo HG. Molecular Perspectives of SARS-CoV-2: Pathology, Immune Evasion, and Therapeutic Interventions. Mol Cells. 2021. 44: 408-421. http://doi:10.14348/molcells.2021.0026
  86. Shinde V, Bhikha S, Hoosain Z, et al. Efficacy of NVX CoV2373 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021. 384: 1899-1909. http://doi:10.1056/NEJMoa2103055
  87. Shuai H, Chan JFW, Hu B, et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature. 2022. 603: 693-699. http://doi:10.1038/s41586-022-04442-5
  88. Simonovich VA, Burgos Pratx LD, Scibona P, et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. N Engl J med. 2021. 384: 619-629. http://doi:10.1056/NEJMoa2031304
  89. Skelly DT, Harding AC, Gilbert-Jaramillo J, et al. Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-CoV-2 variants of concern. Nat Commun. 2021. 12: 5061-5072. http://doi:10.1038/s41467-021-25167-5
  90. Soresina A, Moratto D, Chiarini M, et al. Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatr Allergy Immunol. 2020. 31: 565-569. http://doi:10.1111/pai.13263
  91. Stephenson E, Reynolds G, Botting RA, et al. Single-cell multiomics analysis of the immune response in COVID-19. Nat Med. 2021. 27: 904-916. http://doi:10.1038/s41591-021-01329-2
  92. Szabo PA, Dogra P, Gray JI, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity. 2021. 54: 797-814. http://doi:10.1016/j.immuni.2021.03.005
  93. Tan AT, Linster M, Tan CW, et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Reports. 2021. 34: 108728-108740. http://doi:10.1016/j.celrep.2021.108728
  94. Tang P, Hasan MR, Chemaitelly H, et al. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar. Nat Med. 2021. 27: 2136-2143. https://doi:10.1038/s41591-021-01583-4
  95. Tarke A, Coelho CH, Zhang Z, et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell. 2022. 185: 847-859. http://doi:10.1016/j.cell.2022.01.015
  96. Tarke A, Sidney J, Kidd CK, et al. Comprehensive analysis of T cell immunodominance and immunoprevalence of SARSCoV-2 epitopes in COVID-19 cases. Cell Rep Med. 2021. 2: 100204-100223. http://doi:10.1016/j.xcrm.2021.100204
  97. Tartof SY, Slezak JM, Fischer H, et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet. 2021. 398: 1407-1416. http://doi:10.1016/S0140-6736(21)02183-8
  98. Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges. Nat Rev Immunol. 2021. 21: 195-197. http://doi:10.1038/s41577-021-00526-x
  99. Totura AL, Whitmore A, Agnihothram S, Schafer A, Katze MG, Heise MT. Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection. mBio. 2015. 6: e00638-15. http://doi:10.1128/mBio.00638-15
  100. Tseng HF, Ackerson BK, Luo Y, et al. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nat Med. 2022. 28: 1063-1071. http://doi:10.1038/s41591-02201753-y
  101. UKHSA. SARS-CoV-2 Variants of Concern and Variants Under Investigation in England: Technical Briefing 31, 2021.
  102. Vabret N, Britton GJ, Gruber C, et al. Immunology of COVID-19: Current State of the Science. Immunity. 2020. 52: 910-941. http://doi:10.1016/j.immuni.2020.05.002
  103. Vardhana S, Baldo L, Morice WG 2nd, et al. Understanding T cell responses to COVID-19 is essential for informing public health strategies. Sci Immunol. 2022. 7: eabo1303. https://doi:10.1126/sciimmunol.abo1303
  104. Vogel AB, Kanevsky I, Che Y, et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature. 2021. 592: 283-289. http://doi:10.1038/s41586-021-03275-y
  105. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021. 397: 99-111. http://doi:10.1016/S0140-6736(20)32661-1
  106. Wan S, Yi Q, Fan S, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br J Hematol. 2020. 189: 428-437. http://doi:10.1111/bjh.16659
  107. Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021a. 593: 130-135. http://doi:10.1038/s41586-021-03398-2
  108. Wang Z, Lorenzi J, Muecksch F, et al. Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci Transl Med. 2021b. 13: eabf1555. http://doi:10.1126/scitranslmed.abf1555
  109. Wheatley AK, Juno JA, Wang JJ, et al. Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19. Nat Commun. 2021. 12: 1162-1172. https://doi:10.1038/s41467-021-21444-5
  110. Widge AT, Rouphael NG, Jackson LA, et al. Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. N Engl J Med. 2021. 384: 80-82. http://doi:10.1056/NEJMc2032195
  111. Willyard S. What the Omicron wave is revealing about human immunity. Retrieved from nature website: https://www.nature.com/articles/d41586-022-00214-3.
  112. Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet (London, England). 2022. 399: 437-446. http://doi:10.1016/S0140-6736(22)00017-4
  113. Zhang Z, Mateus J, Coelho CH, et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell. 2022. 185: 2434-2451. http://doi:10.1016/j.cell.2022.05.022
  114. Zhao H, Lu L, Peng Z, et al. Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect. 2022. 11: 277-283. http://doi:10.1080/22221751.2021.2023329
  115. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010. 28: 445-489. http://doi:10.1146/annurev-immunol-030409-101212
  116. Zhuang Z, Lai X, Sun J, et al. Mapping and role of T cell response in SARS-CoV-2-infected mice. J Exp Med. 2021. 218: e20202187. http://doi:10.1084/jem.20202187