참고문헌
- Aleem A, Akbar Samad AB, Slenker AK. Emerging Variants of SARS-CoV-2 And Novel Therapeutics Against Coronavirus (COVID-19). 2022. StatPearls Publishing (Internet).
- Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl Med. 2021. 384: 403-416. http://doi:10.1056/NEJMoa2035389
- Bange EM, Han NA, Wileyto P, et al. CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nat Med. 2021. 27: 1280-1289. http://doi:10.1038/s41591-021-01386-7
- Bergamaschi L, Mescia F, Turner L, et al. Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity. 2021. 54: 1257-1275. http://doi:10.1016/j.immuni.2021.05.010
- Bertoletti A, Le Bert N, Qui M, Tan AT. SARS-CoV-2-specific T cells in infection and vaccination. Cell Mol Immunol. 2021. 18: 2307-2312. http://doi:10.1038/s41423-021-00743-3
- Bonifacius A, Tischer-Zimmermann S, Dragon AC, et al. COVID-19 immune signatures reveal stable antiviral T cell function despite declining humoral responses. Immunity. 2021. 54: 340-354. http://doi:10.1016/j.immuni.2021.01.008
- Breton G, Mendoza P, Hagglof T, et al. Persistent cellular immunity to SARS-CoV-2 infection. J Exp Med. 2021. 218: e20202515. http://doi:10.1084/jem.20202515
- Brouwer P, Caniels TG, van der Straten K, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020. 369: 643-650. http://doi:10.1126/science.abc5902
- Callow KA, Parry HF, Sergeant M, Tyrrell DA. The time course of the immune response to experimental coronavirus infection of man. Epidemiol Infect. 1990. 105: 435-446. https://doi:10.1017/s0950268800048019
- Cao Y, Yisimayi A, Jian F, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 2022. 608: 593-602. http://doi:10.1038/s41586-022-04980-y
- Castro Dopico X, Ols S, Lore K, Karlsson Hedestam GB. Immunity to SARS-CoV-2 induced by infection or vaccination. J Intern Med. 2022. 291: 32-50. http://doi:10.1111/joim.13372
- Choi SJ, Kim DU, Noh JY, et al. T cell epitopes in SARS-CoV-2 proteins are substantially conserved in the Omicron variant. Cell Mol Immunol. 2022. 19: 447-448. http://doi:10.1038/s41423-022-00838-5
- Corbett KS, Flynn B, Foulds KE, et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med. 2020. 383: 1544-1555. http://doi:10.1056/NEJMoa2024671
- Cromer D, Steain M, Reynaldi A, et al. Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis. The Lancet. Microbe. 2022. 3: e52-e61. http://doi:10.1016/S2666-5247(21)00267-6
- Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021. 371: eabf4063. http://doi:10.1126/science.abf4063
- de Silva TI, Liu G, Lindsey BB, et al. The impact of viral mutations on recognition by SARS-CoV-2 specific T cells. iScience. 2021. 24: 103353-103368. http://doi:10.1016/j.isci.2021.103353
- Doria-Rose N, Suthar MS, Makowski M, et al. mRNA-1273 Study Group. Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. N Engl J Med. 2021. 384: 2259-2261. http://doi:10.1056/NEJMc2103916
- Dowell AC, Butler MS, Jinks E, et al. Children develop robust and sustained cross-reactive spike-specific immune responses to SARS-CoV-2 infection. Nat Immunol. 2022. 23: 40-49. http://doi:10.1038/s41590-021-01089-8
- Ferguson N, Ghani A, Hinsley W, Volz E. Report 50: Hospitalisation Risk for Omicron Cases in England (Imperial College London, 2021). Retrieved from https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-50-severity-omicron.
- Ferretti AP, Kula T, Wang Y, et al. Unbiased Screens Show CD8+ T Cells of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside the Spike Protein. Immunity. 2020. 53: 1095-1107. http://doi:10.1016/j.immuni.2020.10.006
- Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J, Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect. 2022. 28: 202-221. http://doi:10.1016/j.cmi.2021.10.005
- Galani IE, Rovina N, Lampropoulou V, et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat Immunol. 2021. 22: 32-40. http://doi:10.1038/s41590-020-00840-x
- Gao Y, Cai C, Grifoni A, et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nat Med. 2022. 28: 472-476. http://doi:10.1038/s41591-022-01700-x
- Garcia-Beltran WF, Lam EC, St Denis K, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. 2021. 184: 2372-2383. https://doi:10.1016/j.cell.2021.03.013
- Geers D, Shamier MC, Bogers S, et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci Immunol. 2021. 6: eabj1750. http://doi:10.1126/sciimmunol.abj1750
- Geurtsvan Kessel CH, Geers D, Schmitz KS, et al. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci Immunol. 2022. 7: eabo2202. http://doi:10.1126/sciimmunol.abo2202
- Goel RR, Painter MM, Apostolidis SA, et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science. 2021. 374: abm0829. https://doi:10.1126/science.abm08297
- Grifoni A, Sidney J, Vita R, et al. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell host & microbe. 2021. 29: 1076-1092. http://doi:10.1016/j.chom.2021.05.010
- Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020. 181: 1489-1501. http://doi:10.1016/j.cell.2020.05.015
- Gulati K, Prendecki M, Clarke C, Willicombe M, McAdoo S. COVID-19 Reinfection in a Patient Receiving Immunosuppressive Treatment for Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Arthritis Rheumatol. 2021. 73: 1091-1092. http://doi:10.1002/art.41671
- Hamady A, Lee J, Loboda ZA. Waning antibody responses in COVID-19: what can we learn from the analysis of other coronaviruses? Infection. 2022. 50: 11-25. http://doi:10.1007/s15010-021-01664-z
- Henss L, Scholz T, von Rhein C, Wieters I, Borgans F, Eberhardt FJ. Analysis of Humoral Immune Responses in Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J Infect Dis. 2021. 223: 56-61. http://doi:10.1093/infdis/jiaa680
- Ibarrondo FJ, Fulcher JA, Goodman-Meza D, et al. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. N Engl J Med. 2020. 383: 1085-1087. https://doi:10.1056/NEJMc2025179
- Jeong HW, Kim JM, Jung MK, et al. Enhanced antibody responses in fully vaccinated individuals against pan-SARS-CoV-2 variants following Omicron breakthrough infection. Cell Reports Med. 2022. 3: 100764-1007800. http://doi:10.1016/j.xcrm.2022.100764
- Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature. 2020. 584: 115-119. http://doi:10.1038/s41586-020-2380-z
- Jung JH, Rha MS, Sa M, et al. SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stem cell-like memory T cells. Nat Commun. 2021. 12: 4043-4054. http://doi:10.1038/s41467-021-24377-1
- Jung MK, Jeong SD, Noh JY, et al. BNT162b2-induced memory T cells respond to the Omicron variant with preserved poly-functionality. Nat Microbiol. 2022. 7: 909-917. http://doi:10.1038/s41564-022-01123-x
- Kalimuddin S, Tham CYL, Qui M, et al. Early T cell and binding antibody responses are associated with COVID-19 RNA vaccine efficacy onset. Med (NY). 2021. 2: 682-688. http://doi:10.1016/j.medj.2021.04.003
- Kaur SP, Gupta V. COVID-19 Vaccine: a comprehensive status report. Virus Res. 2020. 288: 198114-198125. https://doi:10.1016/j.virusres.2020.198114
- Keeton R, Tincho MB, Ngomti A, et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature. 2022. 603: 488-492. http://doi:10.1038/s41586-022-04460-3
- Kent SJ, Khoury DS, Reynaldi A, et al. Disentangling the relative importance of T cell responses in COVID-19: leading actors or supporting cast?. Nat Rev Immunol. 2022. 22: 387-397. http://doi:10.1038/s41577-022-00716-1
- Khosroshahi ML, Rokni M, Mokhtari T, Noorbakhsh F. Immunology, immunopathogenesis and immunotherapeutics of COVID-19; an overview. Int Immunopharmacol. 2021. 93: 107364-107378. http://doi:10.1016/j.intimp.2020.107364
- Kim EJ, Lee D. Coronaviruses: SARS, MERS and COVID-19. Korean J Clin Lab Sci. 2020. 52: 297-309. http://doi.org/10.15324/kjcls.2020.52.4.297
- Kreutmair S, Unger S, Nunez NG, et al. Distinct immunological signatures discriminate severe COVID-19 from non-SARS-CoV-2-driven critical pneumonia. Immunity. 2021. 54: 1578-1593. http://doi:10.1016/j.immuni.2021.05.002
- Kudlay D, Kofiadi I, Khaitov M. Peculiarities of the T Cell Immune Response in COVID-19. Vaccines. 2022. 10: 242-257. http://doi:10.3390/vaccines10020242
- Kustin T, Harel N, Finkel U, et al. Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals. Nat Med. 2021. 27: 1379-1384. https://doi:10.1038/s41591-021-01413-7
- Le Bert N, Clapham HE, Tan AT, et al. Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J Exp Med. 2021. 218: e20202617. http://doi:10.1084/jem.20202617
- Le Bert N, Tan AT, Kunasegaran K, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020. 584: 457-462. http://doi:10.1038/s41586-020-2550-z
- Lee CG, Lee D. Comparison of COVID-19 Vaccines Introduced in Korea [Internet]. Biomedical Science Letters. 2022. 28: 67-82. http://dx.doi.org/10.15616/bsl.2022.28.2.67
- Logunov DY, Dolzhikova IV, Shcheblyakov D, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021. 397: 671-681. http://doi:10.1016/S0140-6736(21)00234-8
- Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020. 26: 845-848. http://doi:10.1038/s41591-020-0897-1 (Long, 2020a)
- Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020. 26: 1200-1204. http://doi:10.1038/s41591-020-0965-6 (Long, 2020b)
- Lou B, Li TD, Zheng SF, et al. Serology characteristics of SARSCoV-2 infection after exposure and post-symptom onset. Eur Respir J. 2020. 56: 2000763-2000772. http://doi:10.1183/13993003.00763-2020
- Lu R, Zhao X, Li J, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020. 2395: 565-574. https://doi:10.1016/S0140-6736(20)30251-8
- Mazzoni A, Di Lauria N, Maggi L, et al. First-dose mRNA vaccination is sufficient to reactivate immunological memory to SARS-CoV-2 in subjects who have recovered from COVID19. J Clin Invest. 2021. 131: e149150. http://doi:10.1172/JCI149150
- McMahan K, Yu J, Mercado NB, et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 2021. 590: 630-634. http://doi:10.1038/s41586-020-03041-6
- McMahan K, Yu J, Mercado NB, et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 2021. 590: 630-634. http://doi:10.1038/s41586-020-03041-6
- Meckiff BJ, Ramirez-Suastegui C, Fajardo V, et al. Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive CD4+ T cells in COVID-19. Cell. 2020. 183: 1340-1353. http://doi:10.1016/j.cell.2020.10.001
- Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London, England). 2020. 395: 1033-1034. http://doi:10.1016/S0140-6736(20)30628-0
- Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020. 20: 355-362. http://doi:10.1038/s41577-020-0331-4
- Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol. 2022. 23: 186-193. http://doi:10.1038/s41590-021-01122-w
- Murphy K, Weaver C. Janeway's immunobiology. 2016. New York and London. Garland Science.
- Naaber P, Tserel L, Kangro K, et al. Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal prospective study. Lancet Reg Health Eur. 2021. 10: 100208-100216. http://doi:10.1016/j.lanepe.2021.100208
- Ng KW, Faulkner N, Cornish GH, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science. 2020. 370: 1339-1343. http://doi:10.1126/science.abe1107
- Notarbartolo S, Ranzani V, Bandera A, et al. Integrated longitudinal immunophenotypic, transcriptional and repertoire analyses delineate immune responses in COVID-19 patients. Science Immunology. 2021. 6: eabg5021. http://doi:10.1126/sciimmunol.abg5021
- Painter MM, Mathew D, Goel RR, et al. Rapid induction of antigen-specific CD4+ T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity. 2021. 54: 2133-2142. http://doi:10.1016/j.immuni.2021.08.001
- Peng Y, Mentzer AJ, Liu G, et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol. 2020. 21: 1336-1345. http://doi:10.1038/s41590-020-0782-6
- Pierce CA, Sy S, Galen B, et al. Natural mucosal barriers and COVID-19 in children. JCI Insight. 2021. 6: e148694. http://doi:10.1172/jci.insight.148694
- Piot P, Larson HJ, O'Brien KL, et al. Immunization: vital progress, unfinished agenda. Nature. 2019. 575: 119-129. http://doi:10.1038/s41586-019-1656-7
- Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020. 383: 2603-2615. http://doi:10.1056/NEJMoa2034577
- Rahimi A, Mirzazadeh A, Tavakolpour S. Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection. Genomics. 2021. 113: 1221-1232. https://doi:10.1016/j.ygeno.2020.09.059
- Robbiani DF, Gaebler C, Muecksch F, et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 2020. 584: 437-442. http://doi:10.1038/s41586-020-2456-9
- Rodda LB, Netland J, Shehata L, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021. 184: 169-183. http://doi:10.1016/j.cell.2020.11.029
- Rodrigues PRS, Alrubayyi A, Pring E, et al. Innate immunology in COVID-19-a living review. Part II: dysregulated inflammation drives immunopathology. Oxf Open Immunol. 2020. 1: iqaa005. http://doi:10.1093/oxfimm/iqaa005
- Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell. 2020. 183: 996-1012. http://doi:10.1016/j.cell.2020.09.038
- Sa Ribero M, Jouvenet N, Dreux M, Nisole S. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog. 2020. 16: e1008737. http://doi:10.1371/journal.ppat.1008737
- Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol. 2021. 21: 475-484. http://doi:10.1038/s41577-021-00578-z
- Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol. 2021. 21: 475-484. http://doi:10.1038/s41577-021-00578-z
- Sahin U, Muik A, Derhovanessian E, et al. BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 2020. 586: 594-599. http://doi:10.1038/s41586-020-2814-7
- Sahin U, Muik A, Vogler I, et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature. 2021. 595: 572-577. http://doi:10.1038/s41586-021-03653-6
- Saxena SK, Kumar S, Ansari S, et al. Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern and its global perspective. J Med Virol. 2022. 94: 1738-1744. http://doi:10.1002/jmv.27524
- Sekine T, Perez-Potti A, Rivera-Ballesteros O, et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell. 2020. 183: 158-168. http://doi:10.1016/j.cell.2020.08.017
- Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021. 184: 861-880. http://doi:10.1016/j.cell.2021.01.007
- Sette A, Crotty S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunol Rev. 2022. 310: 27-46. http://doi:10.1111/imr.13089
- Shah M, Woo HG. Molecular Perspectives of SARS-CoV-2: Pathology, Immune Evasion, and Therapeutic Interventions. Mol Cells. 2021. 44: 408-421. http://doi:10.14348/molcells.2021.0026
- Shinde V, Bhikha S, Hoosain Z, et al. Efficacy of NVX CoV2373 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021. 384: 1899-1909. http://doi:10.1056/NEJMoa2103055
- Shuai H, Chan JFW, Hu B, et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature. 2022. 603: 693-699. http://doi:10.1038/s41586-022-04442-5
- Simonovich VA, Burgos Pratx LD, Scibona P, et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. N Engl J med. 2021. 384: 619-629. http://doi:10.1056/NEJMoa2031304
- Skelly DT, Harding AC, Gilbert-Jaramillo J, et al. Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-CoV-2 variants of concern. Nat Commun. 2021. 12: 5061-5072. http://doi:10.1038/s41467-021-25167-5
- Soresina A, Moratto D, Chiarini M, et al. Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatr Allergy Immunol. 2020. 31: 565-569. http://doi:10.1111/pai.13263
- Stephenson E, Reynolds G, Botting RA, et al. Single-cell multiomics analysis of the immune response in COVID-19. Nat Med. 2021. 27: 904-916. http://doi:10.1038/s41591-021-01329-2
- Szabo PA, Dogra P, Gray JI, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity. 2021. 54: 797-814. http://doi:10.1016/j.immuni.2021.03.005
- Tan AT, Linster M, Tan CW, et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Reports. 2021. 34: 108728-108740. http://doi:10.1016/j.celrep.2021.108728
- Tang P, Hasan MR, Chemaitelly H, et al. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar. Nat Med. 2021. 27: 2136-2143. https://doi:10.1038/s41591-021-01583-4
- Tarke A, Coelho CH, Zhang Z, et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell. 2022. 185: 847-859. http://doi:10.1016/j.cell.2022.01.015
- Tarke A, Sidney J, Kidd CK, et al. Comprehensive analysis of T cell immunodominance and immunoprevalence of SARSCoV-2 epitopes in COVID-19 cases. Cell Rep Med. 2021. 2: 100204-100223. http://doi:10.1016/j.xcrm.2021.100204
- Tartof SY, Slezak JM, Fischer H, et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet. 2021. 398: 1407-1416. http://doi:10.1016/S0140-6736(21)02183-8
- Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges. Nat Rev Immunol. 2021. 21: 195-197. http://doi:10.1038/s41577-021-00526-x
- Totura AL, Whitmore A, Agnihothram S, Schafer A, Katze MG, Heise MT. Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection. mBio. 2015. 6: e00638-15. http://doi:10.1128/mBio.00638-15
- Tseng HF, Ackerson BK, Luo Y, et al. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nat Med. 2022. 28: 1063-1071. http://doi:10.1038/s41591-02201753-y
- UKHSA. SARS-CoV-2 Variants of Concern and Variants Under Investigation in England: Technical Briefing 31, 2021.
- Vabret N, Britton GJ, Gruber C, et al. Immunology of COVID-19: Current State of the Science. Immunity. 2020. 52: 910-941. http://doi:10.1016/j.immuni.2020.05.002
- Vardhana S, Baldo L, Morice WG 2nd, et al. Understanding T cell responses to COVID-19 is essential for informing public health strategies. Sci Immunol. 2022. 7: eabo1303. https://doi:10.1126/sciimmunol.abo1303
- Vogel AB, Kanevsky I, Che Y, et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature. 2021. 592: 283-289. http://doi:10.1038/s41586-021-03275-y
- Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021. 397: 99-111. http://doi:10.1016/S0140-6736(20)32661-1
- Wan S, Yi Q, Fan S, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br J Hematol. 2020. 189: 428-437. http://doi:10.1111/bjh.16659
- Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021a. 593: 130-135. http://doi:10.1038/s41586-021-03398-2
- Wang Z, Lorenzi J, Muecksch F, et al. Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci Transl Med. 2021b. 13: eabf1555. http://doi:10.1126/scitranslmed.abf1555
- Wheatley AK, Juno JA, Wang JJ, et al. Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19. Nat Commun. 2021. 12: 1162-1172. https://doi:10.1038/s41467-021-21444-5
- Widge AT, Rouphael NG, Jackson LA, et al. Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. N Engl J Med. 2021. 384: 80-82. http://doi:10.1056/NEJMc2032195
- Willyard S. What the Omicron wave is revealing about human immunity. Retrieved from nature website: https://www.nature.com/articles/d41586-022-00214-3.
- Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet (London, England). 2022. 399: 437-446. http://doi:10.1016/S0140-6736(22)00017-4
- Zhang Z, Mateus J, Coelho CH, et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell. 2022. 185: 2434-2451. http://doi:10.1016/j.cell.2022.05.022
- Zhao H, Lu L, Peng Z, et al. Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect. 2022. 11: 277-283. http://doi:10.1080/22221751.2021.2023329
- Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010. 28: 445-489. http://doi:10.1146/annurev-immunol-030409-101212
- Zhuang Z, Lai X, Sun J, et al. Mapping and role of T cell response in SARS-CoV-2-infected mice. J Exp Med. 2021. 218: e20202187. http://doi:10.1084/jem.20202187