DOI QR코드

DOI QR Code

수질사고 예방형 상수도 관망 밸브 시스템 설계

A new approach to design isolation valve system to prevent unexpected water quality failures

  • 박경진 (한남대학교 공과대학 토목환경공학과) ;
  • 신금채 (한남대학교 공과대학 토목환경공학과) ;
  • 이승엽 (한남대학교 공과대학 토목환경공학과)
  • Park, Kyeongjin (Department of Civil and Environmental Engineering, Hannam University) ;
  • Shin, Geumchae (Department of Civil and Environmental Engineering, Hannam University) ;
  • Lee, Seungyub (Department of Civil and Environmental Engineering, Hannam University)
  • 투고 : 2022.09.02
  • 심사 : 2022.10.05
  • 발행 : 2022.12.31

초록

상수도 관망 운영 단계에서 비정상상황은 필연적으로 발생하며, 이때 밸브를 이용한 구역의 격리가 필요하다. 밸브를 이용한 구역 격리 시 흐름 경로와 유향, 유속의 변화와 같은 수리적 변화로 인해 수리적 피해는 불가피하며, 대부분의 기존 연구들은 수리적 피해를 최소화할 수 있도록 밸브의 위치를 결정하여 왔다. 다만, 수리적 변화는 예지치 못한 수질 사고를 유발할 수 있기에, 격리 시 수질 사고 발생 여부를 미리 판단할 필요가 있다. 이에 본 연구에서는 밸브 위치에 따른 예지치 못한 수질 문제를 예방할 수 있는 밸브 설계 방안을 제안한다. 이를 위한 격리 전후의 관로별 흐름 특성 변화율을 정량화하는 유향 변경률 인자(Flow Direction Change Ratio, FDCR)와 신뢰도(reliability)를 고려한 최적 설계 방법론을 제안하였으며, 해당 모형을 가상 상수도 관망에 적용하여 FDCR 고려 유무에 따른 설계안을 비교하였다. 설계 결과 FDCR을 고려한 경우 기존 설계안 대비 유향 변동이 없는 것을 확인하였으며, 세그먼트 격리에 따른 절점별 압력과 관별 유속의 평균과 변동성을 확인한 결과 기존 설계안 대비 우수한 성능을 나타냄을 확인하였다. 또한 설계안 비교를 위해 그래프 이론 기반 인자인 수리학적 거리 인자(Hydrualic Geodesic Index, HGI)를 활용하였으며, HGI가 높은 설계안이 유향 변동성이 낮은 것으로 나타났다. 본 연구는 향후 수질 사고를 고려한 밸브 시스템의 설계 및 운영에 활용할 수 있을 것으로 기대한다.

Abnormal condition inevitably occurs during operation of water distribution system (WDS) and requires the isolation of certain areas using isolation valves. In general, the determination of the optimal location of isolation valves considered minimization of hydraulic failures as isolation of certain areas causes a change in hydraulic states (e.g., flow direction, velocity, pressure, etc.). Water quality failure can also be induced by changes in hydraulics, which have not been considered for isolation valve system design. Therefore, this study proposes a new isolation valve system design methodology to prevent unexpected water quality failure events. The new methodology considers flow direction change ratio (FDCR), which accounts for flow direction changes after isolation of the area, as a constraint while reliability is used as the objective function. The optimal design model has been applied to a synthetic grid network and the results are compared with the traditional design approach. Results show that considering FDCR can eliminate flow direction changes while average pressure and coefficient of variation of pressure, velocity, and hydraulic geodesic index (HGI) outperform compared to the traditional design approach. The proposed methodology is expected to be a useful approach to minimizing unexpected consequences by traditional design approaches.

키워드

과제정보

이 논문은 2021 학년도 한남대학교 학술연구비 지원에 의하여 연구되었음

참고문헌

  1. Abraham, E., Blokker, M., and Stoianov, I. (2018). "Decreasing the discoloration risk of drinking water distribution systems through optimized topological changes and optimal flow velocity control." Journal of Resources Planning and management, Vol. 144, No. 2, pp. 6-8.
  2. Ahn, J.C., Lee, S.W., Choi, K.Y., Koo, J.Y., and Jang, H.J. (2011). "Application of unidirectional flushing in water distribution pipes." Journal of Water Supply: Research and Technology - AQUA, Vol. 60, No. 1, pp. 40-50. https://doi.org/10.2166/aqua.2011.013
  3. Alvisi, S., Creaco, E., and Franchini, M. (2011). "Segment identification in water distribution systems." Urban Water Journal, Vol. 8 No. 4, pp. 203-217. https://doi.org/10.1080/1573062X.2011.595803
  4. Armand, H., Stoianov, I., and Graham, N. (2015). "Investigating the impact of sectorized networks on discoloration." Procedia Engineering, Vol. 119, pp. 407-415.
  5. Armand, H., Stoianov, I., and Graham, N. (2017). "A holistic assessment of discolouration processes in water distribution networks." Urban Water Journal, Vol. 14, No. 3, pp. 263-277. https://doi.org/10.1080/1573062x.2015.1111912
  6. Bae, C.-H., Choi, D.Y., Kim, J.-H., and Kim, D.-H. (2014). "The assessment of self cleaning velocity and optimal flushing velocity in water distribution system." Journal of Korean Society of Water and Wastewater, Vol. 28, No. 4, pp. 441-451. https://doi.org/10.11001/jksww.2014.28.4.441
  7. Berardi, L., Ugarelli, R., Rostum, J., and Giustolisi, O. (2014). "Assessing mechanical vulnerability in water distribution networks under multiple failures." Water Resources Research, Vol. 50, No. 3, pp. 2586-2599. https://doi.org/10.1002/2013WR014770
  8. Beuken, R.H.S. (2001). Validation new design rules for DWDS: Lab experiments on standard sediment' (In Dutch). Report number: BTO 2001.171, Kiwa WR N.V., Nieuwegein, The Netherlands.
  9. Blokker, E.M., Schaap, P.G., and Vreeburg, J.H. (2011). "Comparing the fouling rate of a drinking water distribution system in two different configurations." 11th International Conference on Computing and Control for the Industry Urban Water Management, Exeter, CCWI, Exeter, UK, pp. 1-6.
  10. Boxall, J., and Saul, A. (2005). "Modeling discoloration in potable water distribution systems." Journal of Environmental Engineering, Vol. 131, No. 5, pp. 716-725. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:5(716)
  11. Brentan, B., Monteiro, L., Carneiro, J., and Covas, D. (2021). "Improving water age in distribution systems by optimal valve operation." Journal of Water Resources Planning and Management, Vol. 147, No. 8, 04021046.
  12. Creaco, E., Franchini, M., and Alvisi, S. (2012). "Evaluating water demand shortfalls in segment analysis." Water Resources Management, Vol. 26, No. 8, pp. 2301-2321.
  13. Deb, A., Grablutz, F., Hasit, Y., Snyder, J., Loganathan, G., and Agbenowsi, N. (2002). Prioritizing water main rehabilitation and replacement. American Water Works Association Research Foundation, Denver, CO, U.S.
  14. Deuerlein, J., Simpson, A., and Korth, A. (2014). "Flushing planner: A tool for planning and optimization of unidirectional flushing." Procedia Engineering, Vol. 70, pp. 497-506. https://doi.org/10.1016/j.proeng.2014.02.055
  15. Dias, V.C., Besner, M.C., and Prevost, M. (2017). "Predicting water quality impact after district metered area implementation in a full-scale drinking water distribution system." Journal-American Water Works Association, Vol. 109, No. 9, pp. E363-E380. https://doi.org/10.5942/jawwa.2017.109.0099
  16. Fiorini Morosini, A., Caruso, O., and Veltri, P. (2020). "Management of water distribution systems in PDA conditions using isolation valves: Case studies of real networks." Journal of Hydroinformatics, Vol. 22, No. 4, pp. 681-690. https://doi.org/10.2166/hydro.2019.134
  17. Giustolisi, O. (2019). "Water distribution network reliability assessment and isolation valve system." Journal of Water Resources Planning and Management, Vol. 146, No. 1, 04019064.
  18. Giustolisi, O., and Savic, D. (2010). "Identification of segments and optimal isolation valve system design in water distribution networks." Urban Water Journal, Vol. 7, No. 1, pp 1-15. https://doi.org/10.1080/15730620903287530
  19. Goldberg, D.E., Korb, B., and Deb, K. (1989). "Messy genetic algorithms: Motivation, analysis, and first results." Complex Systems, Vol. 3, No. 5, pp. 493-530.
  20. Gupta, R., Baby, A., Arya, P., and Ormsbee, L. (2014). "Upgrading reliability of water distribution networks recognizing valve locations." Procedia Engineering, Vol. 89, pp. 370-377. https://doi.org/10.1016/j.proeng.2014.11.201
  21. Hernandez, E., and Ormsbee, L. (2018) "Application of segment based robustness assessment for water distribution networks." WDSA/CCWI Joint Conference Procedia, Kingston, Ontario, Canada.
  22. Hernandez, E., and Ormsbee, L. (2022). "A heuristic for strategic valve placement." Journal of Water Resources Planning and Management, Vol. 148, No. 2, 04021103.
  23. Hong, S., Lee, C., Park, J., and Yoo, D.G. (2020). "Velocity-based decision of water quality measurement locations for the identification of water quality problems in water supply systems." Journal of Korea Water Resources Association, Vol. 53 No. 11, pp. 1015-1024. https://doi.org/10.3741/JKWRA.2020.53.11.1015
  24. Husband, S., and Boxall, J. (2016). "Understanding and managing discolouration risk in trunk mains." Water Research, Vol. 107, pp. 127-140. https://doi.org/10.1016/j.watres.2016.10.049
  25. Hwang, H., and Lansey, K. (2017). "Water distribution system classification using system characteristics and graph-theory metrics." Journal of Water Resources Planning and Management, Vol. 143, No. 12, 04017071.
  26. Jeong, G., Lim, G., and Kang, D. (2021). "Identification of unintended isolation segments in water distribution networks using a link-by-link adjacency matrix." Journal of Water Resources Planning and Management, Vol. 147, No. 2, 06020013.
  27. Judi, D.R., and McPherson, T.N. (2015). Development of extended period pressure-dependent demand water distribution models. Los Alamos National Laboratory, Los Alamos, NM, U.S.
  28. Jun, H., and Loganathan, G. (2007). "Valve-controlled segments in water distribution systems." Journal of Water Resources Planning and Management, Vol. 133, No. 2, pp. 145-155. https://doi.org/10.1061/(ASCE)0733-9496(2007)133:2(145)
  29. Jung, D., Kang, D., Kim, J.H., and Lansey, K. (2014). "Robustness-based design of water distribution systems." Journal of Water Resources Planning and Management, Vol. 140, No. 11, 0401 4033.
  30. Kang, D., and Lansey, K. (2009). "Real-time optimal valve operation and booster disinfection for water quality in water distribution systems." Journal of Water Resources Planning and Management, Vol. 136, No. 4, pp. 463-473. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000056
  31. Kao, J.J., and Li, P.H. (2007). "A segment-based optimization model for water pipeline replacement." Journal of American Water Works Association, Vol. 99, No. 7, pp. 83-95.
  32. Kim, D., Cheon, S., and Hyun, I. (2015). "A study on the removal of particulate matters using unidirectional flushing." Journal of Korean Society of Water and Wastewater, Vol. 29, No. 3, pp. 371-380. https://doi.org/10.11001/jksww.2015.29.3.371
  33. Lee, S., and Jung, D. (2021a). "Accounting for phasing of isolation valve installation in water distribution networks." Journal of Water Resources Planning and Management, Vol. 147, No. 7, 06021007.
  34. Lee, S., and Jung, D. (2021b). "Shortest-path-based two-phase design model for hydraulically efficient water distribution network: Preparing for extreme changes in water availability." IEEE Access, Vol. 9, pp. 53358-53369.
  35. Lim, G., and Kang, D. (2019). "Optimal placement of isolation valves in water distribution networks based on segment analysis." Journal of Korea Water Resources Association, Vol. 52, No. 4, pp. 291-300. https://doi.org/10.3741/JKWRA.2019.52.4.291
  36. Meng, F., Sweetapple, C., and Fu, G. (2018). "Placement of isolation valves for resilience management of water distribution systems." WDSA/CCWI Joint Conference Procedia, Kingston, Ontario, Canada.
  37. Poulin, A., Mailhot, A., Periche, N., Delorme, L., and Villeneuve, J.-P. (2010). "Planning unidirectional flushing operations as a response to drinking water distribution system contamination." Journal of Water Resources Planning and Management, Vol. 136, No. 6, pp. 647-657. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000085
  38. Sass Braga, A., Saulnier, R., Filion, Y., and Cushing, A. (2020). "Dynamics of material detachment from drinking water pipes under flushing conditions in a full-scale drinking water laboratory system." Urban Water Journal, Vol. 17, No. 8, pp. 745-753. https://doi.org/10.1080/1573062X.2020.1800759
  39. Shuang, Q., Liu, Y., Tang, Y., Liu, J., and Shuang, K., (2017). "System reliability evaluation in water distribution networks with the impact of valves experiencing cascading failures." Water, Vol. 9, No. 6, 413.
  40. Shin, S., Lee, S., Judi, D.R., Parvania, M., Goharian, E., McPherson, T., and Burian, S.J. (2018). "A systematic review of quantitative resilience measures for water infrastructure systems." Water, Vol. 10, No. 2, 164.
  41. Su, Y.C., Mays, L.W., Duan, N., and Lansey, K.E. (1987). "Reliability-based optimization model for water distribution systems." Journal of Hydraulic Engineering, Vol. 113, No. 12, pp. 1539-1556. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:12(1539)
  42. Van Den Boomen, M., Van Mazijk, A., and Beuken, R. (2004). "First evaluation of new design concepts for self-cleaning distribution networks." Journal of Water Supply: Research and Technology ‑ AQUA, Vol. 53, No. 1, pp. 43-50. https://doi.org/10.2166/aqua.2004.0005
  43. Vreeburg, J., Blokker, E.M., Horst, P., and Van Dijk, J. (2009). "Velocity-based self-cleaning residential drinking water distribution systems." Water Science and Technology: Water Supply, Vol. 9, No. 6, pp. 635-641. https://doi.org/10.2166/ws.2009.689
  44. Walski, T.M. (1994). Valves and water distribution system reliability. American Water Works Association National Convention, New York, NY, U.S.
  45. Yang, Z., Guo, S., Hu, Z., Yao, D., Wang, L., Yang, B., and Liang, X. (2022). "Optimal Placement of New Isolation Valves in a Water Distribution Network Considering Existing Valves." Journal of Water Resources Planning and Management, Vol. 148, No. 6, 04022032.