DOI QR코드

DOI QR Code

상수도 잔류염소농도 균등화를 위한 반응계수 추정 및 염소 재투입 최적화

Reaction coefficient assessment and rechlorination optimization for chlorine residual equalization in water distribution networks

  • 정기문 (K-water 연구원 상하수도연구소) ;
  • 강두선 (경희대학교 사회기반시스템공학과) ;
  • 황태문 (한국건설기술연구원 국토보전연구본부)
  • Jeong, Gimoon (Water & Wastewater Research Center, K-water Research Institute) ;
  • Kang, Doosun (Department of Civil Engineering, Kyung Hee University) ;
  • Hwang, Taemun (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2022.08.31
  • 심사 : 2022.09.27
  • 발행 : 2022.12.31

초록

최근 국내에서는 관로 노후화 및 다양한 수질사고 발생으로 인해 상수도 분야에 대한 관심이 급증함에 따라, 상수도 서비스에 대한 이용자들의 수질민원 또한 증가하고 있다. 수질민원의 경우 실제 수질오염뿐만 아니라 소독을 위한 잔류염소농도에 대한 불편을 포함하고 있으며, 따라서 사용자에게 공급되는 잔류염소농도를 균등하게 유지하기 위해 재염소 처리와 같은 다양한 노력이 시도되고 있다. 본 연구에서는 상수관망 내 잔류염소농도 모의를 위해 적용 대상지역의 수질반응계수를 추정하였으며, 수질기준을 만족시키는 동시에 잔류염소농도 균등화를 고려하기 위한 염소 투입 및 재투입 최적화 방법을 제안하였다. 제안된 방법은 국내 대규모 지방상수도를 대상으로 적용하였으며, 격자탐색법을 통해 다양한 염소 투입/재투입 계획을 비교 분석하고, 공급 잔류염소농도의 적합성 및 균등성을 중심으로 최적화한 결과를 제시하였다.

Recently, users' complaints on drinking water quality are increasing according to emerging interest in the drinking water service issues such as pipe aging and various water quality accidents. In the case of drinking water quality complaints, not only the water pollution but also the inconvenience on the chlorine residual for disinfection are included, thus various efforts, such as rechlorination treatment, are being attempted in order to keep the chlorine concentration supplied evenly. In this research, for a more accurate water quality simulation of water distribution network, the water quality reaction coefficients were estimated, and an optimization method of chlorination/ rechlorination scheduling was proposed consideirng satisfaction of water quality standards and chlorine residual equalization. The proposed method was applied to a large-scale real water network, and various chlorination schemes were comparatively analyzed through the grid search algorithm and optimized based on the suitability and uniformity of supplied chlorine residual concentration.

키워드

과제정보

본 연구는 1) 과학기술정보통신부 한국연구재단(과제번호: NRF-2020R1A2C2009517)의 지원과 2) 환경부 한국환경산업기술원의 상하수도 혁신 기술개발사업(과제번호:2020002700004)의 지원으로 수행되었습니다. 이에 감사드립니다.

참고문헌

  1. Al-Jasser, A. (2007). "Chlorine decay in drinking-water transmission and distribution systems: Pipe service age effect." Water Research, Vol. 41, No. 2, pp. 387-396. 
  2. Baek, D., Kim, H., and Kim, S. (2018). "A comparative study for the decay of chlorine residual using EPANET2.0 and an experimental pipeline system." Journal of Korean Society of Water and Wastewater, Vol. 32, No. 5, pp. 411-419.  https://doi.org/10.11001/jksww.2018.32.5.411
  3. Choi, J., and Kang, D. (2015). "Skeletonization methods for complex water distribution network." Journal of Korea Water Resources Association, Vol. 48, No. 10, pp. 845-855.  https://doi.org/10.3741/JKWRA.2015.48.10.845
  4. Chung, W., Kim, I., Lee, H., and Yu, M. (2004). "Subject water quality management in small water distribution reservoir using residual chlorine decay." Seoul Studies, Vol. 5, No. 2, pp. 27-43.  https://doi.org/10.23129/SEOULS.5.2.200406.27
  5. Hallam, N., West, J., Forster, C., Powell, J., and Spencer, I. (2002). "The decay of chlorine associated with the pipe wall in water distribution systems." Water Research, Vol. 36, No. 14, pp. 3479-3488.  https://doi.org/10.1016/S0043-1354(02)00056-8
  6. Han, J. (2014). Application of pipe network model for the equalization of residual chlorine in tap water of Jeju. Master Thesis, Jeju National University. 
  7. Jeong, G., Kang, D., and Hwang, T. (2021). "Spatiotemporal chlorine residual prediction in water distribution networks using a hierarchical water quality simulation technique." Journal of Korea Water Resources Association, Vol. 54, No. 9, pp. 643-656. 
  8. Kang, D., and Lansey, K. (2010). "Real-time optimal valve operation and booster disinfection for water quality in water distribution systems." Journal of Water Resources Planning and Management, Vol. 136, No. 4, pp. 463-473.  https://doi.org/10.1061/(ASCE)WR.1943-5452.0000056
  9. Kim, J., and Han, J. (2014). "Rechlorination for residual chlorine concentration equalization in distribution system." Journal of Korean Society of Water and Wastewater, Vol. 28, No. 1, pp. 91-101.  https://doi.org/10.11001/jksww.2014.28.1.91
  10. K-water (2017). Development of techniques for reconstructing and operating water belt. Technical Report, KIWE-WWRC-17-01. 
  11. Lee, S. (2019). Study on equalization of residual chlorine concentration in water supply systems using optimization techniques. Ph. D. Dissertation, Korea University. 
  12. Ministry of Environment (ME) (2016). Statistics of waterworks 2016. 
  13. Ministry of Environment (ME) (2017). Statistics of waterworks 2017. 
  14. Ministry of Environment (ME) (2018). Statistics of waterworks 2018. 
  15. Ministry of Environment (ME) (2019). Statistics of waterworks 2019. 
  16. Powell, J., Hallam, N., West, J., Forster, C., and Simms, J. (2000). "Factors which control bulk chlorine decay rates." Water Research, Vol. 34, No. 1, pp. 117-126. 
  17. Prasad, T., Walters, G., and Savic, D. (2004). "Booster disinfection of water supply networks: Multiobjective approach." Journal of Water Resources Planning and Management, Vol. 130, No. 5, pp. 347-376. 
  18. Rossman, L., Clark, R., and Grayman, W. (1994). "Modeling chlorine residuals in drinking-water distribution systems." Journal of Environmental Engineering, Vol. 120, No. 4, pp. 803-820. 
  19. Rossman, L., Woo, H., Tryby, M., Shang, F., Janke, R., and Haxton, T. (2020). EPANET 2.2 user manual. U.S. Environmental Protection Agency, EPA/600/R-20/133, Washington, D.C., U.S. 
  20. Sherwood, T., Pigford, R., and Wilke, C. (1975). Mass transfer. McGraw-Hill, NY, U.S.