Acknowledgement
이 연구는 국토교통부/국토교통과학기술진흥원이 시행하고 한국도로공사가 총괄하는 "스마트건설기술개발국가R&D사업(과제번호 22SMIP-A158708-03)"의 지원으로 수행하였습니다.
References
- Anagnostou, G., Kovari, K. (1996), "Face stability conditions with earth-pressure-balanced shields", Tunnelling and Underground Space Technology, Vol. 11, No. 2, pp. 165-173. https://doi.org/10.1016/0886-7798(96)00017-X
- Benardos, A.G., Kaliampakos, D.C. (2004), "Modelling TBM performance with artificial neural networks", Tunnelling and Underground Space Technology, Vol. 19, No. 6, pp. 597-605. https://doi.org/10.1016/j.tust.2004.02.128
- Broere, W. (2001), Tunnel face stability and new CPT applications, Ph.D. Thesis, Delft University of Technology, Netherlands, pp. 5.
- Broms, B.B., Bennermark, H. (1967), "Stability of clay at vertical opening", Journal of the Soil Mechanics and Foundations Division, Vol. 93, No. 1, pp. 71-94. https://doi.org/10.1061/JSFEAQ.0000946
- Davis, E.H., Gunn, M.J., Mair, R.J., Seneviratine, H.N. (1980), "The stability of shallow tunnels and underground openings in cohesive material", Geotechnique, Vol. 30, No. 4, pp. 397-416. https://doi.org/10.1680/geot.1980.30.4.397
- Gao, B., Wang, R., Lin, C., Guo, X., Liu, B., Zhang, W. (2021), "TBM penetration rate prediction based on the long short-term memory neural network", Underground Space, Vol. 6, No. 6, pp. 718-731. https://doi.org/10.1016/j.undsp.2020.01.003
- Gao, X., Shi, M., Song, X., Zhang, C., Zhang, H. (2019), "Recurrent neural networks for real-time prediction of TBM operating parameters", Automation in Construction, Vol. 98, pp. 225-235. https://doi.org/10.1016/j.autcon.2018.11.013
- Grima, M.A., Bruines, P.A., Verhoef, P.N.W. (2000), "Modelling tunnel boring machine performance by neuro-fuzzy methods", Tunnelling and Underground Space Technology, Vol. 15, No. 3, pp. 259-269. https://doi.org/10.1016/S0886-7798(00)00055-9
- Hyun, K.C., Min, S., Choi, H., Park, J., Lee, I.M. (2015), "Risk analysis using fault-tree analysis (FTA) and analytic hierarchy process (AHP) applicable to shield TBM tunnels", Tunnelling and Underground Space Technology, Vol. 49, pp. 121-129. https://doi.org/10.1016/j.tust.2015.04.007
- Jung, J.H., Kim, B.K., Chung, H., Kim, H.M., Lee, I.M. (2019), "A ground condition prediction ahead of tunnel face utilizing time series analysis of shield TBM data in soil tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 21, No. 2, pp. 227-242. https://doi.org/10.9711/KTAJ.2019.21.2.227
- Kim, D., Pham, K., Oh, J.Y., Lee, S.J., Choi, H. (2022), "Classification of surface settlement levels induced by TBM driving in urban areas using random forest with data-driven feature selection", Automation in Construction, Vol. 135.
- Kim, T.H., Kwak, N.S., Kim, T.K., Jung, S., Ko, T.Y. (2021), "A TBM data-based ground prediction using deep neural network", Journal of Korean Tunnelling and Underground Space Association, Vol. 23, No. 1, pp. 13-24. https://doi.org/10.9711/KTAJ.2021.23.1.013
- Kirsch, A. (2010), Numerical Investigation of the Face Stability of Shallow Tunnels in Sand, Numerical Methods in Geotechnical Engineering, CRC Press, London, pp. 795-800.
- Leca, E., Dormieux, L. (1990), "Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material", Geotechnique, Vol. 40, No. 4, pp. 581-606. https://doi.org/10.1680/geot.1990.40.4.581
- Mollon, G., Dias, D., Soubra, A.H. (2013), "Continuous velocity fields for collapse and blowout of a pressurized tunnel face in purely cohesive soil", International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 37, No. 13, pp. 2061-2083. https://doi.org/10.1002/nag.2121
- Santos Jr, O.J., Celestino, T.B. (2008), "Artificial neural networks analysis of Sao Paulo subway tunnel settlement data", Tunnelling and Underground Space Technology, Vol. 23, No. 5, pp. 481-491. https://doi.org/10.1016/j.tust.2007.07.002
- Sharafat, A., Latif, K., Seo, J. (2021), "Risk analysis of TBM tunneling projects based on generic bow-tie risk analysis approach in difficult ground conditions", Tunnelling and Underground Space Technology, Vol. 111.
- Zhang, C., Liang, M., Song, X., Liu, L., Wang, H., Li, W., Shi, M. (2022), "Generative adversarial network for geological prediction based on TBM operational data", Mechanical Systems and Signal Processing, Vol. 162.