DOI QR코드

DOI QR Code

ON VANISHING THEOREMS FOR LOCALLY CONFORMALLY FLAT RIEMANNIAN MANIFOLDS

  • Nguyen, Dang Tuyen (Department of Mathematics National University of Civil Engineering) ;
  • Pham, Duc Thoan (Department of Mathematics National University of Civil Engineering)
  • Received : 2021.04.29
  • Accepted : 2021.08.30
  • Published : 2022.03.31

Abstract

In this paper, we obtain some vanishing theorems for p-harmonic 1-forms on locally conformally flat Riemannian manifolds which admit an integral pinching condition on the curvature operators.

Keywords

Acknowledgement

This work is completed during a stay of the second author at the Vietnam Institutes for Advanced Study in Mathematics (VIASM). He would like to thank the staff there for support. Both authors would like to thank N. T. Dung for drawing our attention to this topic and helpful discussion during the preparation of this work.

References

  1. H.-D. Cao, Y. Shen, and S. Zhu, The structure of stable minimal hypersurfaces in ℝn+1, Math. Res. Lett. 4 (1997), no. 5, 637-644. https://doi.org/10.4310/MRL.1997.v4.n5.a2
  2. L.-C. Chang, C.-L. Guo, and C.-J. A. Sung, p-harmonic 1-forms on complete manifolds, Arch. Math. (Basel) 94 (2010), no. 2, 183-192. https://doi.org/10.1007/s00013-009-0079-3
  3. J.-T. R. Chen and C.-J. A. Sung, Harmonic forms on manifolds with weighted Poincare inequality, Pacific J. Math. 242 (2009), no. 2, 201-214. https://doi.org/10.2140/pjm.2009.242.201
  4. N. T. Dung and K. Seo, p-harmonic functions and connectedness at infinity of complete submanifolds in a Riemannian manifold, Ann. Mat. Pura Appl. (4) 196 (2017), no. 4, 1489-1511. https://doi.org/10.1007/s10231-016-0625-0
  5. N. T. Dung and C.-J. A. Sung, Manifolds with a weighted Poincare inequality, Proc. Amer. Math. Soc. 142 (2014), no. 5, 1783-1794. https://doi.org/10.1090/S0002-9939-2014-11971-X
  6. N. T. Dung and C.-J. A. Sung, Analysis of weighted p-harmonic forms and applications, Internat. J. Math. 30 (2019), no. 11, 1950058, 35 pp. https://doi.org/10.1142/s0129167x19500587
  7. N. T. Dung and P. T. Tien, Vanishing properties of p-harmonic ℓ-forms on Riemannian manifolds, J. Korean Math. Soc. 55 (2018), no. 5, 1103-1129. https://doi.org/10.4134/JKMS.j170575
  8. F. Duzaar and M. Fuchs, On removable singularities of p-harmonic maps, Ann. Inst. H. Poincare Anal. Non Lineaire 7 (1990), no. 5, 385-405. https://doi.org/10.1016/S0294-1449(16)30283-9
  9. Y. Han and H. Pan, Lp p-harmonic 1-forms on submanifolds in a Hadamard manifold, J. Geom. Phys. 107 (2016), 79-91. https://doi.org/10.1016/j.geomphys.2016.05.006
  10. Y. Han, Q. Zhang, and M. Liang, Lp p-harmonic 1-forms on locally conformally flat Riemannian manifolds, Kodai Math. J. 40 (2017), no. 3, 518-536. https://doi.org/10.2996/kmj/1509415230
  11. K.-H. Lam, Results on a weighted Poincare inequality of complete manifolds, Trans. Amer. Math. Soc. 362 (2010), no. 10, 5043-5062. https://doi.org/10.1090/S0002-9947-10-04894-4
  12. P. Li and L.-F. Tam, Harmonic functions and the structure of complete manifolds, J. Differential Geom. 35 (1992), no. 2, 359-383. http://doi.org/10.4310/jdg/1214448079
  13. P. Li and J. Wang, Weighted Poincare inequality and rigidity of complete manifolds, Ann. Sci. Ecole Norm. Sup. (4) 39 (2006), no. 6, 921-982. https://doi.org/10.1016/j.ansens.2006.11.001
  14. H. Lin, On the structure of conformally flat Riemannian manifolds, Nonlinear Anal. 123/124 (2015), 115-125. https://doi.org/10.1016/j.na.2015.05.001
  15. N. Nakauchi, A Liouville type theorem for p-harmonic maps, Osaka J. Math. 35 (1998), no. 2, 303-312. http://projecteuclid.org/euclid.ojm/1200788071
  16. R. Schoen and S.-T. Yau, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988), no. 1, 47-71. https://doi.org/10.1007/BF01393992
  17. M. Vieira, Vanishing theorems for L2 harmonic forms on complete Riemannian manifolds, Geom. Dedicata 184 (2016), 175-191. https://doi.org/10.1007/s10711-016-0165-1
  18. X. Zhang, A note on p-harmonic 1-forms on complete manifolds, Canad. Math. Bull. 44 (2001), no. 3, 376-384. https://doi.org/10.4153/CMB-2001-038-2