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ON VANISHING THEOREMS FOR LOCALLY

CONFORMALLY FLAT RIEMANNIAN MANIFOLDS
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Abstract. In this paper, we obtain some vanishing theorems for p-

harmonic 1-forms on locally conformally flat Riemannian manifolds which
admit an integral pinching condition on the curvature operators.

1. Introduction

It is well known that the theory of L2-harmonic 1-forms has played an im-
portant role in the study of the structure of complete manifolds such as the
topology at infinity of a complete Riemannian manifold or complete orientable
δ-stable minimal hypersurface in Rn+1 (see [1, 12] and others). By the appeal
of this theory, many authors are interested in studying it and there have been
a lot of remarkable results on this field. For instance, Lin [14] investigated the
L2 harmonic 1-form on locally conformally flat Riemannian manifolds and ob-
tained some vanishing and finiteness theorems for L2 harmonic 1-forms. Zhang
[18] obtained vanishing results for p-harmonic 1-forms. Chang [2] obtained
the compactness for any bounded set of p-harmonic 1-forms. Han-Pan [9] in-
vestigated Lp p-harmonic 1-forms on complete noncompact submanifolds in a
Hadamard manifold, and obtained some vanishing and finiteness theorems for
these forms.

For vanishing theorems, there are also many results of those for manifolds
endowed with special analysis structure. By assuming that the Ricci curva-
ture is bounded from below in terms of the dimension and the first eigenvalue,
Li-Wang [13] proved a vanishing-type theorem of L2 harmonic 1-forms. Later,
Li-Wang’s results were generalized by Lam [11] and were continued by many
authors like Chen-Sung [3], Dung-Sung [5,6] and Vieira [17]. By replacing the
condition on bounded Ricci curvature by an integral pinching condition on the
traceless Ricci tensor and the scalar curvature, Han-Zhang-Liang [10] obtained
some vanishing results for Lp p-harmonic 1-forms on a locally conformally flat
Riemannian manifold. To state their results, we recall some notations as fol-
lows.
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Let (M, g) be an m-dimensional Riemannian manifold. A function u on M
is said to be p-harmonic on M if u satisfies the Euler-Lagrange equation

div(|∇u|p−2∇u) = 0.

When p = 2, the function u is a harmonic function. There is a general definition
given as follows: an 1-form ω on M is said to be a p-harmonic 1-form if{

dω = 0,

d∗(|ω|p−2ω) = 0,

in the distributional sense. Here d∗ stands for the dual operator of the usual
differential operator. The space of the Lp p-harmonic 1-form on M is defined
by

H1,p(M) =

{
ω :

∫
M

|ω|p <∞, dω = 0, d∗(|ω|p−2ω) = 0

}
.

Denote by Ric, R and T = Ric− R
mg the Ricci curvature tensor, the scalar

curvature and the traceless Ricci tensor respectively of (M, g).
When M is complete, Lin [14] gave a relation between these curvature op-

erators as follows:

(1.1) Ric ≥ −|T |g − |R|√
m
g

in the sense of quadratic forms.
When M is simply connected, locally conformally flat, then it has a con-

formal immersion into Sm and according to [16], the Yamabe constant of M
satisfies

Q(M) = Q(Sm) =
m(m− 2)ω

2/m
m

4
,

where ωm is the volume of the unit sphere in Rm. Therefore, the following
inequality

(1.2) Q(Sm)

(∫
M

f2m/(m−2)
)(m−2)/m

≤
∫
M

|∇f |2 +
m− 2

4(m− 1)

∫
M

Rf2

holds for all f ∈ C∞0 (M).

Since (1.2), it is well-known that if R ≤ 0 or
∫
M
|R|m/2dv < ∞, then we

have the following Sobolev inequality (for example, see [14]).

(1.3)

(∫
M

f2m/(m−2)
)(m−2)/m

≤ S
∫
M

|∇f |2

holds for all f ∈ C∞0 (M) with some constant S > 0, which is equal to Q(Sm)
−1

in the case where R ≤ 0. In particular, M has infinite volume.
By basing on a precise estimate of the curvature operators which appear in

the Bochner-Weitzenböck formula on p-harmonic 1-forms and together with the
Sobolev inequality induced by the positivity of the Yamabe constant as well as
Kato’s inequality, Han-Zhang-Liang proved the following vanishing theorems.
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Theorem A ([10]). Let (Mm, g)(m ≥ 3) be an m-dimensional complete, sim-
ply connected, locally conformally flat Riemannian manifold. If(∫

M

|T |m/2
)2/m

+
1√
m

(∫
M

|R|m/2
)2/m

<
4[(m− 1)(p− 1) + 1]

Sp2(m− 1)
,

then we have H1,p(M) = {0} for p ≥ 2, where S is a positive constant appearing
in Sobolev inequality (1.3).

Theorem B ([10]). Let (Mm, g)(m ≥ p4) be an m-dimensional complete,
simply connected, locally conformally flat Riemannian manifold with R ≤ 0. If(∫

M

|T |m/2
)2/m

<

[
4

p2
(m− 1)(p− 1) + 1

m− 1
− 4(m− 1)√

m(m− 2)

]
Q(Sm),

then we have H1,p(M) = {0} for p ≥ 2, where Q(Sm) =
m(m−2)ω2/m

m

4 is the
Yamabe constant of Sm and ωm is the volume of the unit sphere in Rm.

By using the approach in [4] and the method in [10], we will give some
extensions for the above vanishing theorems.

Theorem 1.1. Let (Mm, g)(m ≥ 3) be an m-dimensional complete, simply
connected, locally conformally flat Riemannian manifold. Assume that there
exists a positive constant

Λ <
4(p− 1 + kp)

Sp2

satisfying (∫
M

|T |m/2
)2/m

+
1√
m

(∫
M

|R|m/2
)2/m

≤ Λ,

where kp = min{1, (p−1)
2

m−1 } with p ≥ 2. Then every L2β p-harmonic 1-form
vanishes for

p

2
≤ β < 1

SΛ

(
1 +

√
1− SΛ(1− kp)

)
.

Remark 1.2. It is easy to see that

4(p− 1 + kp)

Sp2
≥ 4[(m− 1)(p− 1) + 1]

Sp2(m− 1)
.

Therefore, for 2β = p, Theorem 1.1 can be considered as a refinement of The-
orem 1. We also notice that assertion was obtained by Dung-Tien in [7]. In
fact, in [7], the authors gave a vanishing theorem for p-harmonic 1-forms with
LQ finite energy, for any Q ≥ 2 provided that

Λ ≤ 4(Q− 1 + kp)

SQ2
.

The main difference between ours and theirs is that when Q = p, Dung and
Tien obtained only vanishing property for forms with Lp finite energy while we
can show vanishing property for forms with L2β finite energy.
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Theorem 1.3. Let (Mm, g)(m ≥ p4) be an m-dimensional complete, simply
connected, locally conformally flat Riemannian manifold with R ≤ 0. Assume
that there exists a positive constant

Λ <

[
4(p− 1 + kp)

p2
− 4(m− 1)

(m− 2)
√
m

]
Q(Sm)

satisfying (∫
M

|T |m/2
)2/m

≤ Λ,

where kp = min{1, (p−1)
2

m−1 } with p ≥ 2. Then every L2β p-harmonic 1-form
vanishes for

p

2
≤ β <

1 +
√

1−
( 4(m−1)
(m−2)

√
m

+ ΛS
)
(1− kp)

4(m−1)
(m−2)

√
m

+ ΛS
.

Remark 1.4. As p ≥ 2, then (p−1)2
m−1 ≥

1
m−1 . It implies that kp ≥ 1

m−1 and
therefore

(m− 1)(p− 1) + 1

m− 1
≤ p− 1 + kp.

This means that the range of Λ in our paper is wider than that in Han-Zhang-
Liang. Moreover, our results conclude the L2β p-harmonic 1-forms with 2β ≥ p.

Again, in [7], a vanishing property was obtained for p-harmonic 1-forms with
LQ finite energy (Q ≥ 2). This is to say that the classes of energy in their paper
are larger. Therefore the main contribution of Theorem 1.3 is that for Q = p,
namely when

Λ <

[
4(p− 1 + kp)

p2
− 4(m− 1)

(m− 2)
√
m

]
Q(Sm)

we obtain vanishing results for any p-harmonic 1-forms with L2β finite energy
while in [7], it is only to conclude vanishing results for any p-harmonic 1-forms
with Lp finite energy.

2. Proof of theorems

To verify Theorem 1.1, we need to have the below Kato’s inequality.

Lemma 2.1 ([4]). Let ω be a p-harmonic 1-form on a Riemannian manifold
Mm. Then we have the following inequality

(2.1) |∇(|ω|p−2ω)|2 ≥
(

1 +
kp

(p− 1)2

)
|∇|ω|p−1|2,

where p ≥ 2 and kp = min{1, (p−1)
2

m−1 }.

Lemma 2.2 ([4, 9]). Let f : Mm → R be smooth function on Riemannian
manifold Mm, and ω be a closed 1-form on Mm. Then we have |d(fω)| ≤
|df ||ω|.
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Proof of Theorem 1.1. Let M+ = M \ S where S := {x ∈ M : ω(x) = 0}.
Let ω be any p-harmonic 1-form on Mm with finite L2β norm. Applying the
Bochner-Weitzenböck formula for |ω|p−2ω, we get

1

2
∆(||ω|p−2ω|2) = |∇(|ω|p−2ω)|2 −

〈
(d∗d+ dd∗)|ω|p−2ω, |ω|p−2ω

〉
+ Ric(|ω|p−2ω, |ω|p−2ω).

By using (1.1), we have

1

2

(
2|ω|p−1∆|ω|p−1 + 2

∣∣∇|ω|p−1∣∣2)
≥ |∇(|ω|p−2ω)|2 −

〈
(d∗d+ dd∗)|ω|p−2ω, |ω|p−2ω

〉
− (|T |+ |R|√

m
)|ω|2(p−1).

Since d∗
(
|ω|p−2ω

)
= 0, we obtain

|ω|p−1∆|ω|p−1 ≥
∣∣∇ (|ω|p−2ω)∣∣2 − ∣∣∇|ω|p−1∣∣2
−
〈
d∗d

(
|ω|p−2ω

)
, |ω|p−2ω

〉
− (|T |+ |R|√

m
)|ω|2(p−1).

Dividing both sides of the above inequality by |ω|p−2 and applying Lemma 2.1,
we have

|ω|∆|ω|p−1 ≥ kp|ω|p−2|∇|ω||2 −
〈
d∗d(|ω|p−2ω), ω

〉
− (|T |+ |R|√

m
)|ω|p.(2.2)

Choose any number q ≥ 0 and a smooth nonnegative function ϕ with a
compact support in M+. Multiplying both sides of inequality (2.2) by |ω|qϕ2

and integrating by parts over M+ gives∫
M+

〈
∇(|ω|q+1ϕ2),∇|ω|p−1

〉
+

∫
M+

kp|ω|p+q−2ϕ2|∇|ω||2

−
∫
M+

(|T |+ |R|√
m

)|ω|p+qϕ2

≤
∫
M+

〈
d(|ω|p−2ω), d(|ω|qϕ2ω)

〉
.(2.3)

On the other hand,∫
M+

〈
∇(|ω|q+1ϕ2),∇|ω|p−1

〉
= (q + 1)(p− 1)

∫
M+

|ω|q+p−2|∇|ω||2ϕ2

+ 2(p− 1)

∫
M+

ϕ|ω|p+q−1 〈∇ϕ,∇|ω|〉 .(2.4)

By Lemma 2.2, we have

|d(ϕω)| = |dϕ ∧ ω| ≤ |dϕ||ω|
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for any smooth function ϕ : M → R and any closed 1-form ω. So we get∫
M+

〈
d(|ω|p−2ω), d(|ω|qϕ2ω)

〉
≤
∫
M+

|∇(|ω|p−2)| · |ω| · |∇(|ω|qϕ2)| · |ω|

≤ (p− 2)q

∫
M+

|ω|p+q−2|∇|ω||2ϕ2

+ 2(p− 2)

∫
M+

|ω|p+q−1ϕ| 〈∇ϕ,∇|ω|〉 |.(2.5)

Combining inequalities (2.3), (2.4) and (2.5), we see that

((q + 1)(p− 1) + kp − (p− 2)q)

∫
M+

|ω|p+q−2|∇|ω||2ϕ2

−
∫
M+

(|T |+ |R|√
m

)|ω|p+qϕ2

≤ (2(p− 2) + 2(p− 1))

∫
M+

ϕ|ω|p+q−1| 〈∇ϕ,∇|ω|〉 |.(2.6)

Since

2ϕ|ω|p+q−1|∇ϕ||∇|ω|| ≤ ε|ω|p+q−2ϕ2|∇|ω||2 +
1

ε
|ω|p+q|∇ϕ|2

for ε > 0 and using (2.6), we get

(p+ q − 1 + kp − ε(2p− 3))

∫
M+

|ω|p+q−2|∇|ω||2ϕ2

−
∫
M+

(|T |+ |R|√
m

)|ω|p+qϕ2

≤ 2p− 3

ε

∫
M+

|ω|p+q|∇ϕ|2.(2.7)

Now since m ≥ 3, and by applying Hölder inequality, Sobolev inequality
(1.3) and Cauchy-Schwartz inequality, we obtain that∫

M+

|T |ϕ|2ω|p+q

≤

(∫
supp(ϕ)

|T |m/2
)2/m(∫

M+

(
ϕ|ω|(p+q)/2

)2m/(m−2))(m−2)/m

≤ S

(∫
supp(ϕ)

|T |m/2
)2/m ∫

M+

|∇(ϕ|ω|(p+q)/2)|2

≤ φ(ϕ)

(
(1 + ε)

∫
M+

ϕ2|∇|ω|(p+q)/2|2 +
(
1 +

1

ε

) ∫
M+

|ω|p+q|∇ϕ|2
)

= φ(ϕ)(1 + ε)
(p+ q

2

)2 ∫
M+

ϕ2|ω|p+q−2|∇|ω||2
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+ φ(ϕ)
(
1 +

1

ε

) ∫
M+

|ω|p+q|∇ϕ|2(2.8)

for any ε > 0, where φ(ϕ) = S
(∫

supp(ϕ)
|T |m/2

)2/m
. Similarly, we also get∫

M+

|R|ϕ|2ω|p+q ≤ ψ(ϕ)(1 + ε)
(p+ q

2

)2 ∫
M+

ϕ2|ω|p+q−2|∇|ω||2

+ ψ(ϕ)
(
1 +

1

ε

) ∫
M+

|ω|p+q|∇ϕ|2,(2.9)

where ψ(ϕ) = S
(∫

supp(ϕ)
|R|m/2

)2/m
.

Together (2.7) and (2.8) with (2.9), we get

Cε

∫
M+

|ω|p+q−2|∇|ω||2ϕ2 ≤ Dε

∫
M+

|ω|p+q|∇ϕ|2

for any ϕ ∈ C∞0 (M+), where

Cε = p+ q − 1 + kp − ε(2p− 3)− (1 + ε)

(
p+ q

2

)2(
φ(ϕ) +

ψ(ϕ)√
m

)
,

and

Dε =
2p− ε
ε

+

(
1 +

1

ε

)(
φ(ϕ) +

ψ(ϕ)√
m

)
.

Choose a sufficiently small ε > 0 in the above. Then there exists a positive
constant C = C(ε, n, p, q) such that for any ϕ ∈ C∞0 (M+)

(2.10)

∫
M+

|ω|p+q−2|∇|ω||2ϕ2 ≤ C
∫
M+

|ω|p+q|∇ϕ|2

provided

p+ q − 1 + kp −
(
p+ q

2

)2(
φ(ϕ) +

ψ(ϕ)√
m

)
≥ p+ q − 1 + kp −

(
p+ q

2

)2

SΛ > 0.(2.11)

Let β = p+q
2 ≥

p
2 . Then inequality (2.11) is equivalent to the following condi-

tion:

(2.12) SΛβ2 − 2β + 1− kp < 0.

Moreover it is easy to see that inequality (2.12) is satisfied if and only if the
assumption on Λ and β in Theorem 1.1 is satisfied, that is,

p

2
≤ β < 1

SΛ

(
1 +

√
1− SΛ(1− kp)

)
,

1− SΛ(1− kp) > 0, and SΛ < (p− 1 + kp)
4

p2
.
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Hence Λ < 1
S min

{
1

1−kp , (p− 1 + kp)
4
p2

}
= (p− 1 + kp)

4
Sp2 .

By a variation of the Duzaar-Fuchs cut-off method (see in [4, 5, 8, 15]), we
will show that inequality (2.10) holds for every ψ ∈ C∞0 (M). Indeed, define

ηε̃ = min

{
|ω|
ε̃
, 1

}
for ε̃ > 0. Let ϕε̃ = ψ2ηε̃. Hence, by the assumption, ϕε̃ is a compactly sup-
ported continuous function and ϕε̃ = 0 on M \M+. Moreover, ϕε̃ ∈W 1,2

0 (M+).
As ε̃→ 0, ηε̃ → 1 pointwisely in M+, by the similar argument as in [8,15], not-
ing that ω is differentiable outside S almost everywhere and C∞0 (M) is dense
in C1

0 (M), we can replace ϕ by ϕε̃ in (2.10) to obtain∫
M+

ψ4(ηε̃)
2|ω|p+q−2|∇|ω||2

≤ 6C

∫
M+

|ω|p+q|∇ψ|2ψ2(ηε̃)
2 + 3C

∫
M+

|ω|p+q|∇ηε̃|2ψ4.(2.13)

Noting that ∫
M+

|ω|p+q|∇ηε̃|2ψ4 ≤ ε̃p+q−2
∫
M+

|∇|ω||2ψ4χ{|ω|≤ε̃}(2.14)

and the right hand side of (2.14) vanishes by dominated convergence as ε̃→ 0,
|∇|ω|| ∈ L2

loc(M). Letting ε̃→ 0 and applying Fatou lemma to the integral on
the left hand side and dominated convergence to the first integral in the right
hand side of (2.13), we arrive at

(2.15)

∫
M+

ψ4|ω|p+q−2|∇|ω||2 ≤ 6C

∫
M+

|ω|p+q|∇ψ|2ψ2,

where ψ ∈ C∞0 (M).
Choose a nonnegative smooth function ψ such that

ψ =

{
1 on B(R),

0 on M \B(2R),

and |∇ψ| ≤ 2
R . Note that β = p+q

2 , then inequality (2.15) implies∫
M+∩B(R)

|ω|2β−2|∇|ω||2 ≤ 24C

R2

∫
M+

|ω|2β .

Letting R → ∞, then for all |ω| ∈ L2β(M) is constant on each connected
component of M+. Observe that ω ∈ C0(M) and ω = 0 on ∂M+. Thus
ω = 0 on each connected component of M+ provided ∂M+ 6= ∅, which is a
contradiction. It follows that M+ = M and hence |ω| is a nonzero constant
on M . Since M has infinite volume and |ω| ∈ L2β(M), we have ω = 0. This
completes the proof. �
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Proof of Theorem 1.3. By the assumption R ≤ 0, inequality (1.2) implies that

(2.16)
m− 2

4(m− 1)

∫
M

|R|f2 ≤
∫
M

|∇f |2

for all f ∈ C∞0 (M). Replacing f by ϕ|ω|(p+q)/2 in (2.16), after that using
Cauchy-Schwartz inequality, we obtain

m− 2

4(m− 1)

∫
M+

|R|ϕ2|ω|p+q

≤
∫
M+

|∇(ϕ|ω|(p+q)/2)|2

≤ (1 + ε)

∫
M+

ϕ2|∇|ω(p+q)/2||2 +
(
1 +

1

ε

) ∫
M+

|ω|p+q|∇ϕ|2

= (1 + ε)
(p+ q

2

)2 ∫
M+

ϕ2|ω|p+q−2|∇|ω||2

+
(
1 +

1

ε

) ∫
M+

|ω|p+q|∇ϕ|2(2.17)

with any ε > 0. Together (2.7) and (2.8) with (2.17), we get

Cε

∫
M+

|ω|p+q−2|∇|ω||2ϕ2 ≤ Dε

∫
M+

|ω|p+q|∇ϕ|2

for any ϕ ∈ C∞0 (M+), where

Cε = p+ q − 1 + kp − ε(2p− 3)− (1 + ε)

(
p+ q

2

)2(
4(m− 1)

(m− 2)
√
m

+ φ(ϕ)

)
,

and

Dε =
2p− 3

ε
+

(
1 +

1

ε

)(
φ(ϕ) +

4(m− 1)

(m− 2)
√
m

)
.

Since m ≥ p4, we have

(p− 1 + kp)
4

p2
− 4(m− 1)

(m− 2)
√
m
≥
(
p− 1 +

1

n− 1

)
4

p2
− 4(m− 1)

(m− 2)
√
m
> 0.

Therefore, there exists a number Λ satisfying

0 < Λ ≤ (p− 1 + kp)
4

Sp2
− 4(m− 1)

S(m− 2)
√
m
.

Then, by similar calculations to those in Theorem 1.1, we easily show that the
following inequality

p+ q − 1 + kp −
(
p+ q

2

)2(
4(m− 1)

(m− 2)
√
m

+ φ(ϕ)

)
≥ p+ q − 1 + kp −

(
p+ q

2

)2(
4(m− 1)

(m− 2)
√
m

+ SΛ

)
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≥ p+ q − 1 + kp −
(
p+ q

2

)2
4(p− 1 + kp)

p2
> 0

holds if and only if the assumption on β = p+q
2 in Theorem 1.3 is satisfied.

Now, we can take a sufficiently small ε > 0 such that Cε > 0. Then there
exists a positive constant C = C(ε, n, p, q) such that for any ϕ ∈ C∞0 (M+)∫

M+

|ω|p+q−2|∇|ω||2ϕ2 ≤ C
∫
M+

|ω|p+q|∇ϕ|2.

This inequality and the proof of Theorem 1.1 help us complete this proof. �
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