DOI QR코드

DOI QR Code

항공기 시스템의 치명적인 공통 요인을 식별하기 위한 고장-안전 요구분석 절차 제안

Proposal of a Fail-Safe Requirement Analysis Procedure to Identify Critical Common Causes an Aircraft System

  • Lim, San-Ha (Rotary-wing Division, Korea Aerospace Industries) ;
  • Lee, Seon-ah (Department of Aerospace and Software Engineering, Department of AI Convergence Engineering, Gyeongsang National University) ;
  • Jun, Yong-Kee (Department of Aerospace and Software Engineering, Department of AI Convergence Engineering, Gyeongsang National University)
  • 투고 : 2021.12.04
  • 심사 : 2022.03.10
  • 발행 : 2022.04.01

초록

기존의 국내 개발 회전익 항공기 시스템의 고장-안전 설계 요구사항 도출 방법은 최신 통합형 항공전자 시스템에 적용 시 단일 항목의 고장으로 인하여 치명적인 시스템 기능 고장을 발생시키는 요인을 누락할 수 있다. 그 원인은 고장-안전 설계 대상을 선정함에 있어 단일 품목의 체계 기능 고장 영향성을 그 기준으로 함에 있다. 본 연구에서는 이를 해결하기 위하여 민수 항공기 개발 국제 표준인 SAE ARP4754A의 기능적 위험요소 평가 및 개발보증수준 할당 절차를 활용하여, 시스템 구조의 고장-안전 설계 요구사항을 도출하기 위한 체계적인 분석 절차를 제시한다. 또한 본 연구에서 제시한 절차가 앞서 제시한 문제점을 해결할 수 있는지를 확인하기 위하여 치명적인 기능 고장을 발생시킬 수 있는 단일 요인을 내포한 시스템 구조를 가정하여 교차 검증을 수행하였다. 그 결과 기존 연구 방법으로는 누락되었던 치명적인 공통 요인을 식별할 수 있었고 이를 통제하기 위한 고장-안전 설계 요구사항이 도출됨을 확인하였다.

The existing method of deriving the fail-safe design requirements for the domestic developed rotary-wing aircraft system may miss the factors that cause critical system function failures, when being applied to the latest integrated avionics system. It is because the existing method analyzes the severity effect of the failures caused by a single item. To solve the issue, we present a systematic analysis procedure for deriving fail-safe design requirements of system architecture by utilizing functional hazard assessment and development assurance level analysis of SAE ARP4754A, international standard for complex system development. To demonstrate that our proposed procedure can be a solution for the aforementioned issue, we set up experimental environments that include common factors that can cause critical function failures of a system, and we conducted a cross-validation with the existing method. As a result, we showed that the proposed procedure can identify the potential critical common factors that the existing method have missed, and that the proposed procedure can derive fail-safe design requirements to control the common factors.

키워드

과제정보

이 성과는 정부(과학기술정보통신부, 교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(No. NRF-2021R1A2C1014163 및 No. NRF-2021R1A2C1094167, 2021RIS-003)임.

참고문헌

  1. Scott, F., "Avionics cost and complexity," Aviation Week & Space Technology, February 2010.
  2. Song, C. H., "Development trends in avionics technology," IT SOC magazine 34, March 2009, pp. 24~31.
  3. Fleming, C. H. and Leveson, N. G., "Improving Hazard Analysis and Certification of Integrated Modular Avionics," Journal of Aerospace Information Systems. Vol. 11 No. 6, 2014, pp. 397~411. https://doi.org/10.2514/1.I010164
  4. SAE international, ARP4754A: Guidance for Development of Civil Aircraft and Systems, SAE international, 2010.
  5. Federal Avionics Administration(FAA), AC 29-2C: Certification of Transport Category Rotorcraft, USA FAA, 2014.
  6. Kim, D. S., Jeon, S. M., Jang, J. S., Choi, G. H. and Lee, S. H., "KUH System Safety Program," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2014, pp. 693~697
  7. Defense Acquisition Program Administration, KUH-1 Safety Crtical Item, Korea Aerospace Industries, 2012.
  8. Korea Aerospace Industries(KAI), KUH-1P Safety Critical Item, KAI, 2015.
  9. Department of Defence(DoD), MIL-STD-882D: Standard Practice for System Safety, USA DoD, 2000.
  10. Yun, H. G., Kim, S. J., Kim, Y. T. and Lee, S. H., Airworthiness Certification Practice Written By Experience in Aircraft Development, G-World, 2014, pp. 217~227.
  11. Lee, Y. L., Kim, D. Y., Kim, D. H., Hong, S. B. and Park. J. S., "Vibration Reduction Simulation of UH-60A Helicopter Airframe Using Active Vibration Control System," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 48, No. 6, 2020, pp. 443~453. https://doi.org/10.5139/JKSAS.2020.48.6.443
  12. Ahn, L. K., "Conceptual Design of AVCS Architecture Considering the System Safety," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2016, pp. 628~629.
  13. Federal Avionics Administration(FAA), AC 25-11B: Electronic Flight Displays, USA FAA, 2014.
  14. Seo, J. H., "A Study on Reliability, Safety Analysis and Related Performance Improvement of Avionics Equipment," Journal of the Korea Institute of Information and Communication Engineering, Vol. 22, No. 9, 2018, pp. 1220~1227. https://doi.org/10.6109/JKIICE.2018.22.9.1220
  15. SAE international, ARP4761: Guidance and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment, SAE International, 1996.
  16. Korea Aerospace Industries(KAI), KUH-1E Subsystem Hazard Analysis, KAI, 2019.
  17. Korea Aerospace Industries(KAI), KUH-1E Preliminary System Safety Assessment, KAI, 2019.
  18. Korea Aerospace Industries(KAI) KUH-1E Safety Assessment Report, KAI, 2019.