DOI QR코드

DOI QR Code

금속 적층제조 방식을 이용한 SUS316L 시편의 공정 파라미터 및 금속 분말 재사용에 따른 변형량 변화 분석

Analysis of Variations in Deformations of Additively Manufactured SUS316L Specimen with respect to Process Parameters and Powder Reuse

  • 투고 : 2021.12.20
  • 심사 : 2022.03.10
  • 발행 : 2022.04.01

초록

금속 적층제조 공정 중 발생할 수 있는 잔류응력은 3D 프린팅을 통한 정밀한 금속 부품 제작을 위해 적절히 통제되어야 하는 중요한 요소이다. 따라서 본 연구에서는 이러한 잔류응력에 영향을 끼치는 요인에 대하여 실험적인 방법을 이용하여 고찰하였다. 실험을 위해 적층제조 공정을 통해 시편을 제작하고 이를 절단하여 변형량 측정을 수행하였으며, 측정된 데이터를 curve fitting 등의 방법을 이용하여 적절히 보정함으로써 공정 파라미터 및 금속 분말 재사용 여부가 금속 적층제조 공정에서 발생한 잔류응력으로 인한 변형에 끼치는 영향을 정량적으로 분석할 수 있는 자료를 확보하였다. 이 결과로부터 금속 적층제조 공정에서 잔류응력으로 인한 변형의 크기에 가장 큰 영향을 끼치는 요소는 금속 분말 재사용 여부임을 확인하였다. 또한 레이저의 패턴, 적층 회전 각도와 같은 공정 파라미터도 변형 크기에 영향을 줄 수 있는 것을 확인하였다.

Residual stress that can occur during the metal additive manufacturing process is an important factor that must be properly controlled for the precise production of metal parts through 3D printing. Therefore, in this study, the factors affecting these residual stresses were investigated using an experimental method. For the experiment, a specimen was manufactured through an additive manufacturing process, and the amount of deformation was measured by cutting it. By appropriately calibrating the measured data using methods such as curve fitting, it was possible to quantitatively analyze the effect of process parameters and metal powder reuse on deformation due to residual stress. From this result, it was confirmed that the factor that has the greatest influence on the magnitude of deformation due to residual stress in the metal additive manufacturing process is whether the metal powder is reused. In addition, it was confirmed that process parameters such as laser pattern and laser scan angle can also affect the deformation.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원을 받아 수행된 '회전익항공기 국제협정을 위한 인증체계 개발 및 인프라 구축(21CHTR-C128889-05)'의 연구 성과이며, 지원에 감사드립니다.

참고문헌

  1. Dilberoglu, U. M., Gharehpapagh, B., Yaman, U. and Dolen, M., "The Role of Additive Manufacturing in the Era of Industry 4.0," Procedia Manufacturing, Vol. 11, 2017, pp. 545~554. https://doi.org/10.1016/j.promfg.2017.07.148
  2. An, Y. S., "Structural characteristics and development direction of the domestic aircraft parts industry," The Journal of Aerospace Industry, 1995, pp. 29~55.
  3. Wagner, S. M. and Walton, R. O., "Additive manufacturing's impact and future in the aviation industry," Production Panning & Control, Vol. 27, No. 13, 2016, pp. 1124~1130. https://doi.org/10.1080/09537287.2016.1199824
  4. Najmon, J. C., Raeisi, S. and Tovar, A., "Review of additive manufacturing technologies and applications in the aerospace industry," Additive Manufacturing for the aerospace industry, 2019, pp. 7~31.
  5. Li, C., Liu, Z. Y., Fang, X. Y. and Guo, Y. B., "Residual stress in metal additive manufacturing," Procedia Cirp, Vol. 71, 2018, pp. 348~353. https://doi.org/10.1016/j.procir.2018.05.039
  6. Chen, Q., Liu, J., Liang, X. and To, A. C., "A level-set based continuous scanning path optimization method for reducing residual stress and deformation in metal additive manufacturing," Computer Methods in Applied Mechanics and Engineering, Vol. 360, 2020, 112719. https://doi.org/10.1016/j.cma.2019.112719
  7. Wu, A. S., Brown, D. W., Kumar, M., Gallegos, G. F. and King, W. E., "An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel," Metallurgical and Materials Transactions A, Vol. 45, No. 13, 2014, pp. 6260~6270. https://doi.org/10.1007/s11661-014-2549-x
  8. Baumers, M. and Hlweg, M., "On the economics of additive manufacturing: Experimental findings," Journal of Operations Management, Vol. 65, No. 8, 2019, pp. 794~809. https://doi.org/10.1002/joom.1053
  9. Prashanth, K. G., Scudino, S., Maity, T., Das, J. and Eckert, J., "Is the energy density a reliable parameter for materials synthesis by selective laser melting?," Materials Research Letters, Vol. 5, No. 6, 2017, pp. 386~390. https://doi.org/10.1080/21663831.2017.1299808
  10. Jung, H. Y., Choi, S. J., Prashanth, K. G., Stoica, M., Scudino, S., Yi, S., Kuhn, U., Kim, D. H., Kim, K. B. and Eckert, J., "Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study," Materials & Design, Vol. 86, 2015, pp. 703~708. https://doi.org/10.1016/j.matdes.2015.07.145
  11. Tan, C., Zhou, K., Ma, W., Attard, B., Zhang, P. and Kuang, T., "Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties," Science and Technology of advanced MaTerialS, Vol. 19, No. 1, 2018, pp. 370~380. https://doi.org/10.1080/14686996.2018.1455154
  12. Cordova, L., Campos, M. and Tinga, T., "Revealing the effects of powder reuse for selective laser melting by powder characterization," Jom, Vol. 71, No. 3, 2019, pp. 1062~1072. https://doi.org/10.1007/s11837-018-3305-2
  13. Ghods, S., Schultz, E., Wisdom, C., Schur, R., Pahuja, R., Montelione, A., Aroal, D. and Ramulu, M., "Electron beam additive manufacturing of Ti6Al4V: Evolution of powder morphology and part microstructure with powder reuse," Materialia, Vol. 9, 2020, 100631. https://doi.org/10.1016/j.mtla.2020.100631
  14. Santecchia, E., Spigarelli, S. and Cabibbo, M., "Material reuse in laser powder bed fusion: Side effects of the laser-metal powder interaction," Metals, Vol. 10, No. 3, 2020, p. 341. https://doi.org/10.3390/met10030341
  15. Bolzoni, L., Herraiz, E., Ruiz-Navas, E. M. and Gordo, E., "Study of the properties of low-cost powder metallurgy titanium alloys by 430 stainless steel addition," Materials & Design, Vol. 60, 2014, pp. 628~636. https://doi.org/10.1016/j.matdes.2014.04.019
  16. Akino, K. and Kakehi, K., "Strengths and microstructure of SUS316L fabricated by selective laser melting," Materials transactions, Vol. 59, No. 3, 2018, pp. 482~487. https://doi.org/10.2320/matertrans.M2017163
  17. Yusuf, S. M. and Gao, N., "Influence of energy density on matallurgy and properties in metal additvie manufacturing," Materials Science and Technology, Vol. 33, No. 11, 2017, pp. 1269~1289. https://doi.org/10.1080/02670836.2017.1289444
  18. Bertoli, U. S., Wolfer, A. J., Matthews, M. J., Delplanque, J. P. R. and Schoenung, J. M., "On the limitations of volumetric energy density as a design parameter for selective laser melting," Materials & Design, Vol. 113, 2017, pp. 331~340. https://doi.org/10.1016/j.matdes.2016.10.037
  19. Fan, K. C., Fei, Y. T., Yu, X. F., Chen, Y. J., Wang, W. L., Chen, F. and Liu, Y. S., "Development of a low cost micro-CMM for 3D micro/nano measurements," Measurement Science and Technology, Vol. 17, No. 3, 2006, p. 524. https://doi.org/10.1088/0957-0233/17/3/S12
  20. Yilmazkaya, E. and Ozcelik, Y., "The effects of operational parameters on a mono-wire cutting system: efficiency in marble processing," Rock Mechanics and Rock Engineering, Vol. 49, No. 2, 2016, pp. 523~539. https://doi.org/10.1007/s00603-015-0743-9
  21. Tang, H. P., Qian, M., Liu, N., Zhang, X. Z., Yang, G. Y. and Wang, J., "Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting," Jom, Vol. 67, No. 3, 2015, pp. 555~563. https://doi.org/10.1007/s11837-015-1300-4
  22. Ardila, L. C., Garciandia, F., Gonzalez-Diaz, J. B., Albarez, P., Echeverria, A., Petite, M. M., Deffley, R. and Ochoa, J., "Effect of IN718 recycled powder reuse on properties of parts manufactured by means of selective laser melting," Physics Procedia, Vol. 56, 2014, pp. 99~107. https://doi.org/10.1016/j.phpro.2014.08.152