DOI QR코드

DOI QR Code

산화물이 Doping된 YSZ의 고온 열처리에 따른 Monoclinic 상변화 및 미세구조 분석

Analysis of Monoclinic Phase Change and Microstructure According to High-temperature Heat Treatment of Oxide-doped YSZ

  • 이계원 (한국세라믹기술원 이천분원 엔지니어링소재센터) ;
  • 최용석 (한국세라믹기술원 이천분원 엔지니어링소재센터) ;
  • 전창우 (한국세라믹기술원 이천분원 엔지니어링소재센터) ;
  • 이인환 (고려대학교 신소재공학과) ;
  • 오윤석 (한국세라믹기술원 이천분원 엔지니어링소재센터)
  • Gye-Won, Lee (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yong-Seok, Choi (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Chang-Woo, Jeon (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • In-Hwan, Lee (Department of Materials Science and Engineering, Korea University) ;
  • Yoon-Suk, Oh (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2022.11.23
  • 심사 : 2022.12.13
  • 발행 : 2022.12.28

초록

Yttria-stabilized zirconia (YSZ) has a low thermal conductivity, high thermal expansion coefficient, and excellent mechanical properties; thus, it is used as a thermal barrier coating material for gas turbines. However, during long-time exposure of YSZ to temperatures of 1200℃ or higher, a phase transformation accompanied by a volume change occurs, causing the YSZ coating layer to peel off. To solve this problem, YSZ has been doped with trivalent and tetravalent oxides to obtain coating materials with low thermal conductivity and suppressed phase transformation of zirconia. In this study, YSZ is doped with trivalent oxides, Nd2O3, Yb2O3, Al2O3, and tetravalent oxide, TiO2, and the thermal conductivity of the obtained materials is analyzed according to the composition; furthermore, the relative density change, microstructure change, and m-phase formation behavior are analyzed during long-time heat treatment at high temperatures.

키워드

과제정보

본 논문은 민군협력진흥원 민군겸용기술개발사업(20-CM-CE-14)의 연구지원으로 수행되었습니다.

참고문헌

  1. N. P. Padture, M. Gell and E. H. Jordan: Science, 296 (2002) 280. https://doi.org/10.1126/science.1068609
  2. D. R. Clarke, M. Oechsner and N. P. Padture: MRS Bull., 37 (2012) 891. https://doi.org/10.1557/mrs.2012.232
  3. W. Beele, G. Marijnissen and A. V. Lieshout: Surf. Coat. Technol., 120 (1999) 61.
  4. R. A. Miller: J. Therm. Spray Technol., 6 (1997) 35. https://doi.org/10.1007/BF02646310
  5. R. Darolia: Int Mater Rev., 58 (2013) 315. https://doi.org/10.1179/1743280413Y.0000000019
  6. J. Chevalier, L. Gremillard, A. V. Virkar and D. R. Clarke: J. Am. Ceram. Soc., 92 (2009) 1901. https://doi.org/10.1111/j.1551-2916.2009.03278.x
  7. X. Q. Cao, R. Vassen and D. Stoever: J. Eur. Ceram. Soc., 24 (2004) 1. https://doi.org/10.1016/S0955-2219(03)00129-8
  8. K. Muraleedharan, J. Subrahmanyam and S. B. Bhaduri: J. Am. Ceram. Soc., 71 (1988) C-226.
  9. E. H. Kisi and C. J. Howard: Key Eng. Mater., 153 (1998) 1.
  10. B. Basu, J. Vleugels and O. V. D. Biest: J. Mater. Sci. Eng., A, 366 (2004) 338. https://doi.org/10.1016/j.msea.2003.08.063
  11. C. Viazzi, J.-P. Bonino, F. Ansart and A. Barnabe: J. Alloys Compd., 452 (2008) 377. https://doi.org/10.1016/j.jallcom.2006.10.155
  12. M. H. Oghaz, R. S. Razavi and M. R. L. Estarki: J. Sol-Gel Sci. Technol., 70 (2014) 6. https://doi.org/10.1007/s10971-014-3266-z
  13. M. Bahamirian, S. M. M. Hadavi, M. Farvizi, M. R. Rahimipour and A. Keyvani: Ceram. Int., 45 (2019) 7344. https://doi.org/10.1016/j.ceramint.2019.01.018
  14. R. L. Jones, R. F. Reidy and D. Mess: Surf. Coat. Technol., 82 (1996) 70. https://doi.org/10.1016/0257-8972(95)02646-0
  15. P. Zhang and K.-L. Choy: IJOER, 1 (2015) 18.
  16. D. Hotza, A. Leo, J. Sunarso and J. C. D. Costa: Nano Res., 6 (2009) 115.