DOI QR코드

DOI QR Code

Quality characteristics and biological activities of Rosa multiflora Thunberg fruit through lactic acid bacteria fermentation

찔레나무 열매 젖산 발효물의 품질특성 및 생리활성

  • EunYoung, Yang (Department of Food and Nutrition, Sookmyung Women's University) ;
  • MyungHyun, Kim (Department of Food and Nutrition, Sookmyung Women's University) ;
  • YoungSil, Han (Department of Food and Nutrition, Sookmyung Women's University)
  • Received : 2022.09.02
  • Accepted : 2022.11.29
  • Published : 2022.12.31

Abstract

The purpose of this study was to evaluate the quality characteristics and biological activities of Rosa multiflora Thunberg fruit extracts fermented with Lactobacillus plantarum based on fermentation period of 0, 24, 48, and 72 h. The study showed the pH of Rosa multiflora Thunberg fruit fermentation extracts have decreased as fermentation time increased, but the sugar content remained the same. The total acid content increased as the fermentation time increased. The viable cell count was at highest at 24 h (8.59 log CFU/mL) of fermentation, and the viable cell count decreased as the fermentation time increased. The total polyphenol content (14.85 mg GAE/g), total flavonoid content (6.74 mg RE/g), 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, ABTS+ radical scavenging activity, reducing power, α-glucosidase and α-amylase inhibitory activity were highest at 24 h of fermentation. Therefore, the study proved fermentation of Rosa multiflora Thunberg fruit with lactic acid increases physiological activity compared to nonfermented Rosa multiflora Thunberg fruit. Also the 24 h of fermentation had the highest activity, confirming the possibility of future use as a functional food material.

본 연구는 Lactobacillus plantarum을 이용한 발효물을 제조하여 0, 24, 48, 72시간 동안 품질특성과 생리활성을 분석하였다. 찔레나무 열매 발효물은 발효시간이 길어질수록 pH는 낮아졌고, 당도는 차이가 없었고 총산도는 증가하였다. 생균수는 발효 24시간이 8.59 log CFU/mL로 가장 높았고, 발효시간이 길어질수록 감소하였다. 총 폴리페놀과 플라보노이드 함량은 각각 14.85 mg GAE/g, 6.74 mg RE/g로 발효 24시간이 가장 높았다. DPPH 및ABTS radical 소거 활성, 환원력 모두 발효 24시간이 가장 높았다. α-Glucosidase와 α-amylase 저해 활성의 결과, 발효 24시간에서 가장 높게 나타났다. 따라서, 찔레나무 열매를 젖산 발효하면 발효전보다 생리 활성이 높아짐을 확인하였고, 특히 24시간 발효할 경우 활성이 가장 높아 향후 기능성 식품 소재로서 활용가능성을 확인할 수 있었다.

Keywords

References

  1. Han JT (2006) Development of functional material using the root of Rosa multiflora. Food Ind Nutr 11: 59-65 
  2. Park GH, Lee JY, Kim DH, Cho YJ, An BJ (2011) Antioxidant and anti-inflammatory effects of Rosa multiflora root. J Life Sci 1: 1120-1126. doi: 10.5352/JLS.2011.21.8.1120 
  3. Doh EJ, Shin SM, Lee GS (2019) DNA barcoding analysis of Rosase Multiflorae Fructus and its adulterants. Korea J Herbol 34: 1-8. doi: 10.6116/kjh.2019.34.4.1 
  4. Aritomi M (1962) On the components of the flower petals of Rosa multiflora Thunb. and Rubus hirsutus Thunb. Yakugaku Zasshi 82: 771-773  https://doi.org/10.1248/yakushi1947.82.5_771
  5. Seto T, Yasuda I, Akiyama K (1992) Purgative activity and principals of the fruits of Rosa multiflora and R. wichuraiana. Chem Pharm Bull 40: 2080-2082. doi: 10.1248/cpb.40.2080 
  6. Park JH (2002) Encyclopedia of Chinese crude drugs, Shin-II Co, Seoul, pp 557 
  7. Cho YJ (2013) Antioxidant and antimicrobial activity of Rosa multiflora Thunberg fruits extracts. Curr Res Agri Life Sci 31: 170-176 
  8. Choi CS, Song ES, Kim JS, Kang MH (2003) Antioxidative activities of Castanea Crenata Flos. ethanol extracts. Kor J Food Sci Technol 35: 1216-1220 
  9. Muthaiyah B, Essa MM, Chauhan V, Chauhan A (2011) Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells. Neurochem Res 36: 2096-2103. doi: 10.1007/s11064-011-0533-z 
  10. Nobuyuki I, Shoji F, Akihiro H, Michiko S, Tadashi O (1983) Carcinogenicity of butylated hydroxyanisole in F344 Rats. J Natl Cancer Inst 70: 343-352. doi: 10.1093/jnci/70.2.343 
  11. Cha JY, Cho YS (2001) Antioxidative activity of extracts from fruit of Curdrania tricuspidata. J Life Sci 30: 547-551 
  12. Choi CY, Degrandi IH, Cho SH (2011) Antioxidant effect of assai palm methanolic extract. Kor J Food Preserv 18: 967-972. doi: 10.11002/kjfp.2011.18.6.967 
  13. Jin DH, Seong JH, Lee YG, Kim DS, Chung HS, Kim HS (2016) Antioxidant activity and effective compounds of black raspberry (Rubus coreanus Miquel) extracted by different solvents. J Korea Appl Sci Techol 33: 474-482. doi: 10.12925/jkocs.2016.33.3.474 
  14. Teuber M (1993) Lactic acid bacteria. biotechnology, Second Edition, Weinheim., Zurich, Switzerland, pp. 325-366 
  15. Ahn HY, Park KR, Kim YR, Cha JY, Cho YS (2013) Chemical characteristics in fermented cordycepin-enriched Cordyceps militaris. J Life Sci 23: 1032-1040. doi: 10.5352/JLS.2013.23.8.1032 
  16. Kong BM, Park JW, Min HB, Kim SH, Kim SY, Yang DC (2008) Physicochemical characteristics of white, fermented and red ginseng extracts. J Ginseng Res 32: 238-243. doi: 10.5142/JGR.2008.32.3.238 
  17. Cho HS, Lee SH, Park YS (2018) Process optimization of solid-phase fermentation of Cordyceps militaris with germinated soybean using Lactobacillus plantarum KCB001. Food Eng Prog 22: 256-263  https://doi.org/10.13050/foodengprog.2018.22.3.256
  18. Champagne CP, Raymond Y (2008) Viability of Lactobacillus Rhamnosus R0011 in an apple-based fruit juice under simulated storage conditions at the consumer level. J Food Sci 73: 221-226. doi: 10.1111/j.1750-3841.2008.00775.x 
  19. Pereira ALF, Maciel TC, Rodrigues S (2011) Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Res Int 44: 1276-1283. doi: 10.1016/j.foodres.2010.11.035 
  20. Park SI, Yeo SS, Lee YS, Jeong YH, Kim MS (2017) Inhibitory activities of digestive enzymes and antioxidant activities of fermented beverages using Momordica charantia L. J Korea Soc Food Sci Nutr 46: 1308-1315. doi: 10.3746/jkfn.2017.46.11.1308 
  21. Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica. I. the quantitative analysis of phenolic constituents. J Sci Food Agri 10: 63-68. doi: 10.1002/jsfa.2740100110 
  22. Davis WB (1947) Determination of flavanones in citrus fruits. Anal Chem 19: 476-478. doi: 10.1021/ac60007a016 
  23. Blois MS (1958) Antioxidant determination by use of a stable free radical. Nature 81: 1199-1200  https://doi.org/10.1038/1811199a0
  24. Re R, Pellegrini N, Protegente A, Panala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radic Biol Med 26: 1231-1237. doi: 10.1016/S0891-5849(98)00315-3 
  25. Oyaizu M (1986) Studies on products of browning reaction. antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44: 307-315. doi: 10.5264/eiyogakuzashi.44.307 
  26. Zhu YP, Yin LJ, Cheng YQ, Yamaki K, Mori Y, Su YC, Li LT (2008) Effect of sources of carbon and nitrogen on production of α-glucosidase inhibitor by a newly isolated strain of Bacillus subtilis B2. Food Chem 109: 737-742. doi: 10.1016/j.foodchem.2008.01.006 
  27. Bhandari MR, Jong-Anurakkun N, Hong G, Kawabata J (2008) α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed(Bergenia ciliata, Haw.). Food Chem 106: 247-252. doi: 10.1016/j.foodchem.2007.05.077 
  28. Kim JW, Hong JH (2020) Physicochemical properties and physiological activities of acai berry extract fermented by lactic acid bacteria. Korea J Food Preserv 27: 363-373. doi: 10.11002/kjfp.2020.27.3.363 
  29. Lee DH, Hong JH (2015) Physicochemical properties and storage stability of blueberry fermented by lactic acid bacteria. Korea J Food Preserv 22: 796-803. doi: 10.11002/kjfp.2015.22.6.796 
  30. Puls W, Keup U (1973) Influence of an α-amylase inhibitor (BAY d 7791) on blood glucose, serum insulin and nefa in starch loading tests in rats, dogs and man. Diabetologia 9: 97-101. doi: 10.1007/BF01230687 
  31. Reddy LV, Min JH, Wee YJ (2015) Production of probiotic mango juice by fermentation of lactic acid bacteria. Microbiol Biotechnol Lett 43: 120-125. doi: 10.4014/mbl.1504.04007 
  32. Song BN, Lee DB, Lee SH, Park BR, Choi JH, Kim YS, Park SY (2020) Physicochemical properties and antioxidant activity of extract from Astragalus membranaceus Bunge leaf fermented with lactic acid bacteria. Korea J Med Crop Sci 28: 428-434. doi: 10.7783/KJMCS.2020.28.6.428 
  33. Sung JM, Choi HY (2014) Effect of mulberry powder on antioxidant activities and quality characteristics of yogurt. J Korea Soc Food Sci Nutr 43: 690-697. doi: 10.3746/jkfn.2014.43.5.690 
  34. Lee HS, Kwon SY, Lee SO, Lee SP (2016) Production of fermented Omija (Schizandra chinensis) beverage fortified with high content of gamma-amino butyric acid using Lactobacillus plantarum. Korea J Food Preserv 23: 326-334. doi: 10.11002/kjfp.2016.23.3.326 
  35. Kim GH, Bae EK (1999) Lactic acid bacteria for the preservation of fruit and vegetables. Korea J Food Preserv 6: 245-254 
  36. Park SI, Yeo SS, Lee YS, Jeong YH, Kim MS (2017) Inhibitory activities of digestive enzymes and antioxidant activities of fermented beverages using Momordica charantia L. J Korea Soc Food Sci Nutr 46: 1308-1315  https://doi.org/10.3746/JKFN.2017.46.11.1308
  37. Lee DH, Hong JH (2016) Physicochemical properties and antioxidant activities of fermented mulberry by lactic acid bacteria. J Korea Soc Food Sci Nutr 45: 202-208. doi: 10.3746/jkfn.2016.45.2.202 
  38. Kurmann JA, Rasic JL (1991) The health potential of products containing bifidobacteria, therapeutic properties of fermented milk. Agricultural Institute Grangeneuve, Posieux, Switzerland, pp 117-157 
  39. Oh YJ, Kim TS, Moon HW, Lee SY, Ji GE, Hwang KT (2020) Lactobacillus plantarum PMO 08 as a probiotic starter culture for plant-based fermented beverages. Molecules 25: 5056. doi: 10.3390/molecules25215056 
  40. Jeong SJ, Kim BH, Lee JH, Park YE, Kim JG, Kwon GS, Lee JB (2019) Increased antioxidant activity of the fermented Cnidium officinale extract by Lactobacillus plantarum BHN-LAB 33. J Korea Soc Food Sci Nutr 48: 1053-1060  https://doi.org/10.3746/jkfn.2019.48.10.1053
  41. Seo MJ, Kang BW, Park JU, Kim MJ, Lee HH, Kim NH, Kim KH, Rhu EJ, Jeong YK (2013) Effect of fermented Cudrania tricuspidata fruit extracts on the generation of the cytokines in mouse spleen cells. J Life Sci 23: 682-688. doi: 10.5352/JLS.2013.23.5.682 
  42. Kim SE, Baek S, Lee HS, Kim HK (2018) Inhibitory effects of black radish fermented with probiotics on antioxidant and lipid accumulation. J Korea Soc Food Sci Nutr 47: 710-716  https://doi.org/10.3746/jkfn.2018.47.7.710
  43. Jang GW, Choi SI, Han X, Men X, Kwon HY, Choi YE, Kang NY, Park BW, Kim JJ, Lee OH (2021) Antioxidant and anti-inflammatory activities of Phellodendron amurense extract fermented with Lactobacillus plantarum CM. J Food Saf Hyg 36: 196-203. doi: 10.13103/JFHS.2021.36.2.196 
  44. Hung P.V, Maeda T, Miyatake K, Morita N (2009) Total phenolic compounds and antioxidant capacity of wheat graded flours by polishing method. Food Res Int 42: 185-190. doi: 10.1016/j.foodres.2008.10.005 
  45. Han EJ, Um JH, Park SY, Lim JS, Lim DH, Ahn CB, Ahn GN (2015) Antioxidant effects of the enzymatic extracts from Lactobacillus plantarum-fermented Saccharina japonica. J Chitin Chitosan Res 20: 202-209  https://doi.org/10.17642/jcc.20.3.8
  46. Kim EJ, Choi YC, Yu MR, Kim MY, Lee SH, Lee BH (2012) Total polyphenols, total flavonoid contents, and antioxidant activity of Korean natural and medicinal plants. Korea J Food Sci Technol 44: 337-342. doi: 10.9721/KJFST.2012.44.3.337 
  47. Shin JH, Yoo SK (2012) Antioxidant properties in microbial fermentation products of Lonicera japonica Thunb. extract. J East Asian Soc Dietary Life 22: 95-102