DOI QR코드

DOI QR Code

드론을 활용한 철근콘크리트 말뚝기초 시공 오차 자동화 측정 방법

Automated Measurement Method for Construction Errors of Reinforced Concrete Pile Foundation Using a Drones

  • Seong, Hyeonwoo (Hyundae Teuksu Construction Research Center) ;
  • Kim, Jinho (Hyundae Teuksu Construction Research Center) ;
  • Kang, HyunWook (Department of Architectural Engineering, Gwangju University)
  • 투고 : 2021.12.06
  • 심사 : 2022.01.26
  • 발행 : 2022.03.31

초록

본 연구의 목적은 드론을 활용하여 철근콘크리트 말뚝기초의 시공 오차를 분석하는 모델을 제시하는 것이다. 이에 따라 먼저, 드론을 활용하여 건설 현장에 대한 항공이미지를 획득하고 이를 기반으로 정사모자이크 이미지를 생성하고 다음으로 허프 변환 원형 검출 방법을 활용하여 정사모자이크 이미지에서 원형 형태의 말뚝기초를 자동으로 인식하도록 하였다. 마지막으로, 중첩된 정사 모자이크 이미지와 구조 도면 상의 철근콘크리트 말뚝기초의 중심점을 기준으로 연단거리를 계산하고, 수평 위치변동 15cm를 기준으로 철근콘크리트 말뚝기초의 시공 오차를 분석한다. 또한, 제시된 모델의 활요성을 검증하기 위하여 토공 및 지정공사가 진행 중인 교육시설물 1개소를 선정하여 적용한 결과, 시공된 말뚝기초 전부를 자동으로 인식하였고 오차범위를 초과한 말뚝기초의 개수를 도출하였다.

The purpose of this study is to present a model for analyzing construction errors of reinforced concrete pile foundations using drones. First, a drone is used to obtain an aerial image of the construction site, and an orthomosaic image is generated based on those images. Then, the circular pile foundation is automatically recognized from the orthomosaic image by using the Hough transform circle detection method. Finally, the distance is calculated based on the the center point of the reinforced concrete pile foundation in the overlapped data. As a case study, the proposed concrete concrete pile foundation construction quality control model was applied to the real construction site in Incheon to evaluate the proposed model.

키워드

참고문헌

  1. Aguera-Vega, F., Carvajal-Ramirez, F., Martinez-Carricondo, P., Lopez, J.S.H., Mesas-Carrascosa, F.J., Garcia-Ferrer, A., and Perez-Porras, F.J. (2018). "Reconstruction of extreme topography from UAV structure from motion photogrammetry." Measurement, 121, pp. 127-138. https://doi.org/10.1016/j.measurement.2018.02.062
  2. Kang, M.J. (2015). "Started domestic drone pilot business, preparing to enter the logistics industry." Korea Maritime Research Institute, 2015(11), pp. 48-51.
  3. Kim, H.G., Kim, H.J., and Park, S.J. (2015). "Construction Industry Drone Applicability." Construction Engineering and Management, 16(4), pp. 3-8.
  4. Kim, S.J. (2020). "Recent Research Trends and Implications on the use of Drones in Construction Industry." Construction Engineering and Management, 21(1), pp. 45-49.
  5. Lee, S.B., Auh, S.C., Song, M.H., Kim, J.J., and Park, K.C. (2020). "Calculation of Earthwork Volume by UAV Photogrammetry at Expressway Construction Sites." Korea Society of Civil Engineering, pp. 426-427.
  6. Lee, J.H., Hwang, D.W., and Choi. J.H.. (2018). "The overview and application of measurement using drones." Yooshin, 25, pp. 237-256.
  7. Park, E.S., Yu, C.H., and Choi, J.W. (2014). "Real-time Line Detection Algorithm for UAV via Hough Transform." Institute of Control, Robotics and System. pp. 275-276.
  8. Sin, S.H. (2019). A study on development of slope inspection method using drone. MS thesis, Hanyang Univ.
  9. Siebert, S., and Teizer, J. (2014). "Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system." Automation in construction, 41, pp. 1-14. https://doi.org/10.1016/j.autcon.2014.01.004
  10. Statistica 'Projected commercial drone revenue worldwide from 2016 to 2025'