DOI QR코드

DOI QR Code

A Study on Cryogenic Line Chill Down Characteristics of LNG

극저온 LNG 배관냉각 특성에 대한 연구

  • BYEONGCHANG, BYEON (LNG and Cryogenic Technology Center, Korea Institute of Machinery & Materials) ;
  • KYOUNG JOONG, KIM (Mechanical Engineering Department, KAIST) ;
  • SANGKWON, JEONG (Mechanical Engineering Department, KAIST) ;
  • MO SE, KIM (LNG and Cryogenic Technology Center, Korea Institute of Machinery & Materials) ;
  • SANGYOON, LEE (LNG and Cryogenic Technology Center, Korea Institute of Machinery & Materials) ;
  • KEUN TAE, LEE (LNG and Cryogenic Technology Center, Korea Institute of Machinery & Materials) ;
  • DONGMIN, KIM (LNG and Cryogenic Technology Center, Korea Institute of Machinery & Materials)
  • 변병창 (한국기계연구원 LNG.극저온기계기술 시험인증센터) ;
  • 김경중 (KAIST 기계공학과) ;
  • 정상권 (KAIST 기계공학과) ;
  • 김모세 (한국기계연구원 LNG.극저온기계기술 시험인증센터) ;
  • 이상윤 (한국기계연구원 LNG.극저온기계기술 시험인증센터) ;
  • 이근태 (한국기계연구원 LNG.극저온기계기술 시험인증센터) ;
  • 김동민 (한국기계연구원 LNG.극저온기계기술 시험인증센터)
  • Received : 2022.10.11
  • Accepted : 2022.11.02
  • Published : 2022.12.30

Abstract

In this research paper, we investigated the cryogenic line chill down characteristics of liquefied natural gas (LNG). A numerical analysis model was established and verified so that it can calculate the precise cooling characteristics of cryogenic fluid for the stable and safe utilization especially such as LNG and liquid hydrogen. The numerical modeling was programmed by C++ as an one-dimensional homogeneous model. The thermohydraulic cooling process was simulated using mass, momentum, energy conservation equations and appropriate heat transfer correlations. In this process, the relevant heat transfer correlations for nuclear boiling, transition boiling, film boiling, and single-phase heat transfer that can predict the experimental results were implemented. To verify the numerical modeling, several cryogenic line chill down experiments using LNG were conducted at the Korea Institute of Machinery & Materials (KIMM) LNG and Cryogenic Technology Center.

Keywords

Acknowledgement

이 논문은 2022년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구이다(20203010040020, 액화수소 충전소용 100 kg/h, 90 MPa급 극저온 왕복동 펌프 개발 및 20213030040460, 액체수소 운송선박 핵심시스템[화물창, BOG처리, CHS] 국산화 모델 개발).

References

  1. H. J. Nam and T. H. Lee, "A study on the status and competitiveness of LNG-fuelled ships as a future new marine industry", Professional management research, Vol. 20, No. 3, 2017, pp. 119. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE08793984.
  2. H. J. Ryu, H. Nam, B. W. Hwang, H. Kim, Y. Won, D. Kim, D. W. Kim, G. H. Lee, and J. I. Baek, "Basic design and sensitivity analysis of 3 MWth chemical looping combustion system for LNG combustion and steam generation", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 374387, doi: https://doi.org/10.7316/KHNES.2021.32.5.374.
  3. J. C. Burke, W. R. Byrnes, A. H. Post, and F. E. Ruccia, "Pressurized cooldown of cryogenic transfer lines", Advances in Cryogenic Engineering, 1960, pp. 378394, doi: https://doi.org/10.1007/9781475705409_33.
  4. J. W. H. Chi, J. M. Edmiston, and O. R. Hansen, "Effect of vertical flow at low flowrates on transient two-phase flow and boiling heat transfer", Westinghouse Electric Corp., Astronuclear Lab, 1964, doi: https://doi.org/10.2172/4254623.
  5. K. Srinivasan, V. S. Rao, and M. V. K. Murthy, "Analytical and experimental investigation on cool-down of short cryogenic transfer lines", Cryogenics, Vol. 14, No. 9, 1974, pp. 489494, doi: https://doi.org/10.1016/00112275(74)901258.
  6. H. Hu, J. N. Chung, and S. H. Amber, "An experimental study on flow patterns and heat transfer characteristics during cryogenic chilldown in a vertical pipe", Cryogenics, Vol. 52, No. 46, 2012, pp. 268277, doi: https://doi.org/10.1016/j.cryogenics.2012.01.033.
  7. J. Hartwig, H. Hu, J. Styborski, and J. N. Chung, "Comparison of cryogenic flow boiling in liquid nitrogen and liquid hydrogen chilldown experiments", International Journal of Heat and Mass Transfer, Vol. 88, 2015, pp. 662673, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.102.
  8. R. Darr, H. Hu, R. Shaeffer, J. Chung, J. W. Hartwig, and A. K. Majumdar, "Numerical simulation of the liquid nitrogen chilldown of a vertical tube", 53rd AIAA Aerospace Sciences Meeting, 2015, pp. 0468, doi: https://doi.org/10.2514/6.20150468.
  9. L. Jin, J. Lee, and S. Jeong, "Investigation on heat transfer in line chill-down process with various cryogenic fluids", International Journal of Heat and Mass Transfer, Vol. 150, 2020, pp. 119204, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2019.119204.
  10. J. Zhang, K. Wang, and L. Chen, "Experimental study on liquid oxygen chilldown in the horizontal pipe with an injector on the exit", Applied Thermal Engineering, Vol. 173, 2020, pp. 115212, doi: https://doi.org/10.1016/j.applthermaleng.2020.115212.
  11. R. E. Henry, "A correlation for the minimum film boiling temperature", 1974. Retrieved from http://pascalfrancis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7530027059.
  12. O. R. Burggraf, "An exact solution of the inverse problem in heat conduction theory and applications", J. Heat Transfer, Vol. 86, No. 3, 1964, pp. 373380, doi: https://doi.org/10.1115/1.3688700.
  13. Z. L. Miropolskiy, "Heat transfer in film boiling of a steam-water mixture in steam-generator tubes", Teplonergetika, Vol. 10, 1963, pp. 4952. Retrieved from https://cir.nii.ac.jp/crid/1571980074368094848.
  14. L. Jin, C. Park, H. Cho, C. Lee, and S. Jeong, "Experimental investigation chill-down process of cryogenic flow line", Cryogenics, Vol. 79, 2016, pp. 96105, doi: https://doi.org/10.1016/j.cryogenics.2016.08.006.