DOI QR코드

DOI QR Code

저출력 및 고출력 SOEC 시스템의 경제성 분석 비교

Economic Analysis and Comparison between Low-Power and High-Power SOEC Systems

  • 뚜안앵 (한국기계연구원 무탄소연료발전연구실) ;
  • 김영상 (한국기계연구원 무탄소연료발전연구실) ;
  • 이동근 (한국기계연구원 무탄소연료발전연구실) ;
  • 안국영 (한국기계연구원 무탄소연료발전연구실) ;
  • 배용균 (한국기계연구원 무탄소연료발전연구실) ;
  • 이상민 (한국기계연구원 무탄소연료발전연구실)
  • TUANANH, BUI (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM)) ;
  • YOUNG SANG, KIM (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM)) ;
  • DONG KEUN, LEE (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM)) ;
  • KOOK YOUNG, AHN (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM)) ;
  • YONGGYUN, BAE (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM)) ;
  • SANG MIN, LEE (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
  • 투고 : 2022.09.30
  • 심사 : 2022.10.13
  • 발행 : 2022.12.30

초록

Hydrogen production using solid oxide electrolysis cells (SOEC) is a promising technology because of its efficiency, cleanness, and scalability. Especially, high-power SOEC system has received a lot of attention from researchers. This study compared and analyzed the low-power and high-power SOEC system in term of economic. By using revenue requirement method, levelized cost of hydrogen (LCOH) was calculated for comparison. In addition, the sensitivity analysis was performed to determine the dependence of hydrogen cost on input variables. The results indicated that high-power SOEC system is superior to a low-power SOEC system. In the capital cost, the stack cost is dominant in both systems, but the electricity cost is the most contributed factor to the hydrogen cost. If the high-power SOEC system combines with a nuclear power plant, the hydrogen cost can reach 3.65 $/kg when the electricity cost is 3.28 ¢/kWh and the stack cost is assumed to be 574 $/kW.

키워드

과제정보

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구과제이며(No. 20213030040110), 또한 농촌진흥청의 농업과학기술 연구개발사업(No. PJ016288, 수소연료전지 3중 열병합 시스템 농업모델 개발)의 지원으로 수행되었으며 이에 감사드린다.

참고문헌

  1. United Nations, "What is the Kyoto protocol?", United Nations Framework Convention on Climate Change. Retrieved from https://unfccc.int/kyoto_protocol?gclid=EAIaIQobChMIq4WC6vnbgIVB62WCh3KgQlIEAAYASAAEgKGFfD_BwE.
  2. United Nations Treaty Collection, "Paris Agreement", 2015. Retrieved from https://treaties.un.org/Pages/ViewDetails.aspx?src=IND&mtdsg_no=XXVII7d&chapter=27&clang=_en.
  3. A. Trattner, M. Klell, and F. Radner, "Sustainable Hydrogen Society - vision, findings and development of a hydrogen economy using the example of Austria", Int. J. Hydrogen Energy, Vol. 47, No, 4, 2022, pp. 2059-2079, doi: https://doi.org/10.1016/j.ijhydene.2021.10.166.
  4. R. Rapier, "Life cycle emissions of hydrogen", The Fourth Generation, 2020. Retrieved from https://4thgeneration.energy/lifecyclesemissionsofhydrogen/.
  5. C. Song, "Hydrogen and syngas production and purification technologies", John Wiley & Sons, Inc., USA, 2009, pp. 1-13.
  6. J. S. Choksey, "What's the difference between gray, blue, and green hydrogen?", J. D. Power, 2021. Retrieved from https://www.jdpower.com/cars/shopping-guides/whats-the-difference-between-gray-blue-and-green-hydrogen.
  7. D. Milani, A. Kiani, and R. McNaughton, "Renewable powered hydrogen economy from Australia's perspective", Int. J. Hydrogen Energy, Vol. 45, No. 46, 2020, pp. 24125-24145, doi: https://doi.org/10.1016/j.ijhydene.2020.06.041.
  8. B. Lee, H. Chae, N. H. Choi, C. Moon, S. Moon, and H. Lim, "Economic evaluation with sensitivity and profitability analysis for hydrogen production from water electrolysis in Korea", Int. J. Hydrogen Energy, Vol. 42, No. 10, 2017, pp. 6462-6471, doi: https://doi.org/10.1016/j.ijhydene.2016.12.153.
  9. D. Jang, J. Kim, D. Kim, W. B. Han, and S. Kang, "Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies", Energy Conversion and Management, Vol. 258, 2022, pp. 115499, doi: https://doi.org/10.1016/j.enconman.2022.115499.
  10. T. Bui, Y. S. Kim, V. T. Giap, D. K. Lee, and K. Y. Ahn, "Parametric study on high power SOEC system", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 6, 2021, pp. 470-476, doi: https://doi.org/10.7316/KHNES.2021.32.6.470.
  11. J. Cao, Y. Li, Y. Zheng, S. Wang, W. Zhang, X. Qin, G. Geng, and B. Yu, "A novel solid oxide electrolysis cell with micro/nano channel anode for electrolysis at ultra-high current density over 5 A cm-2", Advanced Energy Materials, Vol. 12, No. 28, 2022, pp. 2200899, doi: https://doi.org/10.1002/aenm.202200899.
  12. H. Shimada, T. Yamaguchi, H. Kishimoto, H. Sumi, Y. Yamaguchi, K. Nomura, and Y. Fujishiro, "Nanocomposite electrodes for high current density over 3 A cm-2 in solid oxide electrolysis cells", Nature Communications, Vol. 10, No. 1, 2019, pp. 5432, doi: https://doi.org/10.1038/s41467019134265.
  13. A. Hauch, R. Kungas, P. Blennow, A. B. Hansen, J. B. Hansen, B. V. Mathiesen, and M. B. Mogensen, "Recent advances in solid oxide cell technology for electrolysis", Science, Vol. 370, No. 6513, 2020, pp. eaba6118, doi: https://doi.org/10.1126/science.aba6118.
  14. E. Tang, T. Wood, C. Brown, M. Casteel, M. Pastula, M. Richards, and R. Petri, "Solid oxide based electrolysis and stack technology with ultrahigh electrolysis current density (>3A/cm2) and efficiency", FuelCell Energy, Inc., 2018. Retrieved from https://www.osti.gov/servlets/purl/1513461.
  15. A. Brisse and J. Schefold, "High temperature electrolysis at EIFER, main achievements at cell and stack level", Energy Procedia, Vol. 29, 2012, pp. 5363, doi: https://doi.org/10.1016/j.egypro.2012.09.008.
  16. R. Knibbe, M. L. Traulsen, A. Hauch, S. D. Ebbesen, and M. Mogensen, "Solid oxide electrolysis cells: degradation at high current densities", J. Electrochem. Soc., Vol. 157, No. 8, pp. B1209B1217. Retrieved from https://iopscience.iop.org/article/10.1149/1.3447752.
  17. A. Wood, H. He, T. Joia, M. Krivy, and D. Steedman, "Communication-electrolysis at high efficiency with re markable hydrogen production rates", J. Electrochem. Soc., Vol. 163, No. 5, 2016, pp. F327-F329. Retrieved from https://iopscience.iop.org/article/10.1149/2.0341605jes.
  18. V. T. Giap, Y. D. Lee, Y. S. Kim, T. Bui, and K. Y. Ahn, "New definition of levelized cost of energy storage and its application to reversible solid oxide fuelcell", Energy, Vol. 239, 2022, pp. 122220, doi: https://doi.org/10.1016/j.energy.2021.122220.
  19. Q. Fang, L. Blum, R. Peters, M. Peksen, P. Batfalsky, and D. Stolten, "SOFC stack performance under high fuel utilization", Int. J. Hydrogen Energy, Vol. 40, No. 2, 2015, pp. 1128-1136, doi: https://doi.org/10.1016/j.ijhydene.2014.11.094.
  20. A. Bejan, G. Tsatsaronis, and M. J. Moran, "Thermal design and optimization", John Wiley & Sons, Inc., USA, 1996.
  21. M. M. Whiston, I. M. L. Azevedo, S. Litster, C. Samaras, K. S. Whitefoot, and J. F. Whitacre, "Meeting U.S. solid oxide fuel cell targets", Joule, Vol. 3, No. 9, 2019, pp. 2060-2065. Retrieved from https://www.cell.com/joule/pdfExtended/S25424351(19)303629. https://doi.org/10.1016/j.joule.2019.07.018
  22. G. A. Hackett, "Systems analysis of solid oxide fuel cell plant configurations", U.S. DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, 2018. Retrieved from https://netl.doe.gov/sites/default/files/netlfile/FE22-Hackett-Systems-Analysis-of-SOFC-Plan-tCon-figurations.pdf.
  23. Electric Power Statistics Information System Retrieved from https://epsis.kpx.or.kr/epsisnew/selectMain.do?locale=.
  24. https://www.matche.com.
  25. M. S. Peters and K. D. Timmerhaus, "Plant design and economics for chemical engineers", 2nd ed, McGraw-Hill, USA, 2003.