DOI QR코드

DOI QR Code

고준위 방사성 폐기물 지질처분을 위한 해외 선진국의 심부 지하수 환경 연구동향 분석 및 시사점 도출

Status and Implications of Hydrogeochemical Characterization of Deep Groundwater for Deep Geological Disposal of High-Level Radioactive Wastes in Developed Countries

  • 투고 : 2022.12.07
  • 심사 : 2022.12.28
  • 발행 : 2022.12.28

초록

고준위 방사성 폐기물(High-level radioactive waste; HLW)의 지질처분을 위해서는 심부 지하 환경에 대한 이해가 선행되어야 하며, 이는 지질학적, 수리지질학적, 지구화학적, 지질공학적 조사를 통해 가능하다. 우리나라는 HLW의 지질처분을 계획하고 있으나, 심부 지하 환경의 지구화학적 특성에 관한 연구가 부족한 편이다. 이에 본 논문에서는 지질처분 부지 선정을 위한 지구화학적 조사를 중심으로 선진국의 심부 지하수 연구 동향을 살펴봄으로써 앞으로 국내 수리지구화학 분야의 연구 과제를 도출하는데 참고하고자 하였다. 해외 8개 국가(미국, 캐나다, 핀란드, 스웨덴, 프랑스, 독일, 일본, 스위스)의 심부 지하 환경 조사 방법 및 결과와 함께 지질처분 부지 결정 과정과 향후 연구 계획을 살펴본 결과, 해외 선진국에서는 심부 지하 환경의 지구화학적 특성화를 위해 지하수 및 난대수층 내 간극수의 수화학과 동위원소(예: SO42-34S, 18O, DIC의 13C, 14C, H2O의 2H, 18O), 균열 충전광물(fracture-filling minerals), 유기물, 콜로이드, 산화-환원 지시자(예: Eh, Fe2+/Fe3+, H2S/SO42-, NH4+/NO3-) 등을 조사하고 있으며, 이들 지구화학 자료의 통합 해석을 통해 해당 심부 환경이 지질처분에 적합한지를 평가하였다. 국내의 경우, 인공신경망을 이용한 Self-Organizing Map(자기조직화 지도), 다변량 통계 기반 M3 모델링(지하수 혼합 모델), 반응-경로 모델(reaction path model) 등을 이용하여 심부 지하수의 수화학적 유형 분류 및 진화 패턴 규명, 천부 지하수 혼합 영향, 균열 충전광물과 지하수화학 사이의 관계를 규명한 바 있다. 그러나 지질처분 부지를 선정하는데 있어 과학적 근거를 확보하기 위해 중요한 기타 지구화학 자료(예: 동위원소, 산화-환원 지시자, 용존유기물)가 매우 부족한 현실이며, 따라서 최적의 지질 처분지를 찾기 위해서는 지역별/유형별 심부 지하수에 대한 지구화학적 자료 구축이 요구된다.

For the geological disposal of high-level radioactive wastes (HLW), an understanding of deep subsurface environment is essential through geological, hydrogeological, geochemical, and geotechnical investigations. Although South Korea plans the geological disposal of HLW, only a few studies have been conducted for characterizing the geochemistry of deep subsurface environment. To guide the hydrogeochemical research for selecting suitable repository sites, this study overviewed the status and trends in hydrogeochemical characterization of deep groundwater for the deep geological disposal of HLW in developed countries. As a result of examining the selection process of geological disposal sites in 8 countries including USA, Canada, Finland, Sweden, France, Japan, Germany, and Switzerland, the following geochemical parameters were needed for the geochemical characterization of deep subsurface environment: major and minor elements and isotopes (e.g., 34S and 18O of SO42-, 13C and 14C of DIC, 2H and 18O of water) of both groundwater and pore water (in aquitard), fracture-filling minerals, organic materials, colloids, and oxidation-reduction indicators (e.g., Eh, Fe2+/Fe3+, H2S/SO42-, NH4+/NO3-). A suitable repository was selected based on the integrated interpretation of these geochemical data from deep subsurface. In South Korea, hydrochemical types and evolutionary patterns of deep groundwater were identified using artificial neural networks (e.g., Self-Organizing Map), and the impact of shallow groundwater mixing was evaluated based on multivariate statistics (e.g., M3 modeling). The relationship between fracture-filling minerals and groundwater chemistry also has been investigated through a reaction-path modeling. However, these previous studies in South Korea had been conducted without some important geochemical data including isotopes, oxidationreduction indicators and DOC, mainly due to the lack of available data. Therefore, a detailed geochemical investigation is required over the country to collect these hydrochemical data to select a geological disposal site based on scientific evidence.

키워드

과제정보

본 논문의 작성은 한국사용후핵연료광리핵심기술개발사업단(iKSNF)의 연구비 지원에 의해 이루어졌다. 또한 부분적으로 한국연구재단(과제번호 2021M2E1A1085202)과 한국지질자원연구원 주요사업(22-3411)의 지원을 받았다.

참고문헌

  1. Aalto, P., Aaltonen, I. and Kemppainen, K. (2009) Programme for repository host rock characterisation in the ONKALO (ReRoC). https://inis.iaea.org/search/search.aspx?orig_q=RN:43066563
  2. Ahlers, C.F., Finsterle, S. and Bodvarsson, G.S. (1999) Characterization and prediction of subsurface pneumatic response at Yucca Mountain, Nevada. Journal of Contaminant Hydrology, v.38, p.47-68. doi: 10.1016/S0169-7722(99)00011-X
  3. Aikin, A.M., Harrison, J.M. and Hare, F.K. (1977) The management of Canada's nuclear wastes. https://inis.iaea.org/search/search.aspx?orig_q=RN:9399170
  4. Alley, W.M. and Parker, B.L. (2014) Geologic Disposal of Spent Nuclear Fuel: An Earth Science Perspective. https://www.researchgate.net/publication/269994551
  5. ANDRA (2020) The Cigeo Project France's Industrial Centre for Geological Disposal of radioactive waste.
  6. Andrews, J.N., Fontes, J.C., Fritz, P. and Nordstrom, K. (1988) Hydrogeochemical Assessment of Crystalline Rock for Radioactive Waste Disposal: The Stripa Experience. Technical Report, SKB.
  7. Bath, A. (2002) Geochemical Parameters Required from the SKB Site Characterisation Programme S i SKI Perspective Background.
  8. BGE (2020) Sub-areas Interim Report pursuant to Section 13 StandAG.
  9. Birkholzer, J., Houseworth, J. and Tsang, C.F. (2012) Geologic disposal of high-level radioactive waste: status, key issues, and trends. Annual Review of Environment and Resources, v.37, p.79-106. doi: 10.1146/annurev-environ-090611-143314
  10. Bodvarsson, G.S., Boyle, W., Patterson, R. and Williams, D. (1999) Overview of scientific investigations at Yucca Mountain - the potential repository for high-level nuclear waste. Journal of Contaminant Hydrology, v.38, p.3-24. doi: 10.1016/S0169-7722(99)00009-1
  11. Bossart, P., Bernier, F., Birkholzer, J., Bruggeman, C., Connolly, P., Dewonck, S., Fukaya, M., Herfort, M., Jensen, M., Matray, J.-M., Mayor, J.C., Moeri, A., Oyama, T., Schuster, K., Shigeta, N., Vietor, T. and Wieczorek, K. (2017) Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments. Swiss Journal of Geosciences, v.110, p.3-22. doi: 10.1007/s00015-016-0236-1
  12. Bossart, P. and Thury, M. (2007) Research in the Mont Terri Rock laboratory: Quo vadis? Physics and Chemistry of the Earth, Parts A/B/C, v.32, p.19-31. doi: 10.1016/J.PCE.2006.04.031
  13. Bredehoeft, J.D. and Maini, T. (1981) Strategy for radioactive waste disposal in crystalline rocks. Science, v.213, p.293-296 doi: 10.1126/science.213.4505.293
  14. Brewitz, W. and Rothfuchs, T. (2007) Concepts and Technologies for Radioactive Waste Disposal in Rock Salt. In Acta Montanistica Slovaca Rocnik, v.12, p.67-74.
  15. Brookins, D.G. (1984) Geochemical aspects of radioactive waste disposal. doi: 10.1007/978-1-4613-8254-6
  16. Chae, G.T., Yun, S.T., Kim, K. and Mayer, B. (2006) Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water-rock interaction and hydrologic mixing. Journal of Hydrology, v.321, p.326-343. doi: 10.1016/j.jhydrol.2005.08.006
  17. Charlier, F. (2019) Comparative Survey of International Repository Projects. Mining Report Glukauf, v.15, no.5, p.454-465.
  18. Delay, J., Lebon, P. and Rebours, H. (2010) Meuse/Haute-Marne centre: next steps towards a deep disposal facility. Journal of Rock Mechanics and Geotechnical Engineering, v.2, p.52-70. doi: 10.3724/SP.J.1235.2010.00052
  19. Delay, J., Rebours, H., Vinsot, A. and Robin, P. (2007) Scientific investigation in deep wells for nuclear waste disposal studies at the Meuse/Haute Marne underground research laboratory, Northeastern France. Physics and Chemistry of the Earth, Parts A/B/C, v.32, p.42-57. doi: 10.1016/J.PCE.2005.11.004
  20. Delay, J., Vinsot, A., Krieguer, J.M., Rebours, H. and Armand, G. (2007) Making of the underground scientific experimental programme at the Meuse/Haute-Marne underground research laboratory, North Eastern France. Physics and Chemistry of the Earth, Parts A/B/C, v.32, p.2-18. doi: 10.1016/J.PCE.2006.04.033
  21. Dideriksen, K., Christiansen, B.C., Baker, J.A., Frandsen, C., Balic-Zunic, T., Tullborg, E., Morup, S. and Stipp, S.L.S. (2007) Feoxide fracture fillings as a paleo-redox indicator: structure, crystal form and Fe isotope composition. Chemical Geology, v.244, p.330-343. doi: 10.1016/j.chemgeo.2007.06.027
  22. Doughty, C. (1999a) Investigation of conceptual and numerical approaches for evaluating moisture, gas, chemical, and heat transport in fractured unsaturated rock. Journal of Contaminant Hydrology, v.38, p.69-106. doi: 10.1016/S0169-7722(99)00012-1
  23. Doughty, C. (1999b) Investigation of conceptual and numerical approaches for evaluating moisture, gas, chemical, and heat transport in fractured unsaturated rock. Journal of Contaminant Hydrology, v.38, p.69-106. doi: 10.1016/S0169-7722(99)00012-1
  24. Eichinger, F., Hammerli, J., Waber, H.N., Diamond, L.W. and Smellie, J.A.T. (2013) Chemistry and Dissolved Gases of Matrix Pore Water and Fluid Inclusions in Olkiluoto Bedrock From Drillhole ONK-PH9. IAEA Working Report 2011-63.
  25. Fairhurst, C., Gera, F., Gnirk, P., Gray, M. and Stillborg, B. (1993) The International Stripa Project: an overview. Tunnelling and Underground Space Technology, v.8, p.315-343. doi: 10.1016/0886-7798(93)90018-Q
  26. Garcia-Gutierrez, M., Cormenzana, J.L., Missana, T., Mingarro, M., Alonso, U., Samper, J., Yang, Q. and Yi, S. (2008) Diffusion experiments in Callovo-Oxfordian clay from the Meuse/Haute-Marne URL, France. Experimental setup and data analyses. Physics and Chemistry of the Earth, Parts A/B/C, v.33(SUPPL. 1), p.S125-S130. doi: 10.1016/J.PCE.2008.10.019
  27. Gaucher, E., Robelin, C., Matray, J.M., Negrel, G., Gros, Y., Heitz, J.F., Vinsot, A., Rebours, H., Cassagnabere, A. and Bouchet, A. (2004) ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian-Oxfordian formation by investigative drilling. Physics and Chemistry of the Earth, Parts A/B/C, v.29, p.55-77. doi: 10.1016/J.PCE.2003.11.006
  28. Gimeno, M.J., Auque, L.F., Acero, P. and Gomez, J.B. (2014) Hydrogeochemical characterisation and modelling of groundwaters in a potential geological repository for spent nuclear fuel in crystalline rocks (Laxemar, Sweden). Applied Geochemistry, v.45, p.50-71. doi: 10.1016/j.apgeochem.2014.03.003
  29. Gimmi, T. and Waber, H.N. (2004) Modeling of Tracer Profiles in Pore Water of Argillaceous Rocks in the Benken Borehole: Stable Water Isotopes, Chloride, and Chlorine Isotopes. Technical Report 04-05, NAGRA.
  30. Gomez, J.B., Gimeno, M.J., Auque, L.F. and Acero, P. (2014) Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden. Science of the Total Environment, v.468-469, p.791-803. doi: 10.1016/j.scitotenv.2013.09.007
  31. Grambow, B. (2016) Geological disposal of radioactive waste in Clay. Elements, v.12, p.239-245. doi: 10.2113/gselements.12.4.239
  32. Grauer, R. (1994) Bentonite as a Backfill Material in a High-Level Waste Repository. MRS Bulletin, v.19, p.43-46. doi: 10.1557/S0883769400048697
  33. Hall, D.S., Behazin, M., Jeffrey, B.W. and Keech, P.G. (2021) An evaluation of corrosion processes affecting copper-coated nuclear waste containers in a deep geological repository. Progress in Materials Science, v.118, p.100766. doi: 10.1016/J.PMATSCI.2020.100766
  34. Hansen, F.D., Hardin, E.L., Rechard, R.P., Freeze, G.A., Sassani, D.C., Brady, P.V., Stone, C.M., Martinez, M.J., Holland, J.F., Dewers, T., Gaither, K.N., Sobolik, S.R. and Cygan, R.T. (2010) Shale Disposal of U.S. High-Level Radioactive Waste. doi: 10.2172/992338
  35. Haukwa, C.B., Wu, Y.S. and Bodvarsson, G.S. (1999) Thermal loading studies using the Yucca Mountain unsaturated zone model. Journal of Contaminant Hydrology, v.38, p.217-255. doi: 10.1016/S0169-7722(99)00016-9
  36. Hedin, A. (1997) Spent nuclear fuel - How dangerous is it? A report from the project 'Description of risk'. Technical Report 97-13, IAEA.
  37. Hoyer, E.M., Luijendijk, E., Muller, P., Kreye, P., Panitz, F., Gawletta, D. and Ruhaak, W. (2021) Preliminary safety analyses in the high-level radioactive waste site selection procedure in Germany. Advances in Geosciences, v.56, p.67-75. doi: 10.5194/adgeo-56-67-2021
  38. Hu, Q.H., Rose, T.P., Zabarin, N., Smith, D.K., Moran, J.E. and Zhao, P. H. (2006) Assessing field-scale migration of radionuclides at the Nevada Test Site: "Mobile" species. Journal of Environmental Radioactivity, v.99, p.1617-1630. doi: 10.1016/j.jenvrad.2008.06.007
  39. IAEA (2002) Issues and Trends in Radioactive Waste Management. Proceedings od an International Conference (Vienna, 2002). IAEA.
  40. IAEA (2003) Scientific and Technical Basis for the Geological Disposalof Radioactive Wastes. Technical Report Series, No. 413, IAEA.
  41. IAEA (2015) INPRO Dialogue Forum on Cooperative Approaches to the Back End of the Nuclear Fuel Cycle: Drivers and Legal, Institutional and Financial Impediments. International Conference on the Management of Spent Fuel from Nuclear Power Reactors, IAEA.
  42. Ingebritsen, S.E., Sanford, W.E. and Neuzil, C.E. (2006) Groundwater in Geologic Processes. Cambridge University Press.
  43. JNC (2000) H12: Project to Establish the Scientific and Technical Basis for HLW Disposal, JNC.
  44. Karnbranslehantering, S. (2005) Hydrogeochemical evaluation Preliminary site description Forsmark area - version 1.2, Svensk Karnbranslehantering AB. www.skb.se
  45. Kaul, A. and Rothemeyer, H. (1997) Investigation and evaluation of the Gorleben site: a status report. In Nuclear Engineering and Design, v.176, p.83-88, doi: 10.1016/S0029-5493(96)01345-3.
  46. Kharecha, P.A. and Hansen, J.E. (2013) Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power Terms of Use. Environmental Science and Technology, v.47, p.4889-4895. doi: 10.1021/es3051197
  47. Kim, K.H., Yun, S.T., Yu, S., Choi, B.Y., Kim, M.J. and Lee, K.J. (2020) Geochemical pattern recognitions of deep thermal groundwater in South Korea using self-organizing map: Identified pathways of geochemical reaction and mixing. Journal of Hydrology, v.589, article 125202. doi: 10.1016/j.jhydrol.2020.125202
  48. Kondo, S. (2021) Strategies and Practices to Enhance Public Awareness for Implementing Radioactive Waste Management Programmes in Japan. https://inis.iaea.org/search/search.aspx?orig_q=RN:53084517
  49. Kong, D.C., Dong, C.F., Xiao, K. and Li, X.G. (2017) Effect of temperature on copper corrosion in high-level nuclear waste environment. Transactions of Nonferrous Metals Society of China, v.27, p.1431-1438. doi: 10.1016/S1003-6326(17)60165-1
  50. Krall, L., Evins, L.Z., Kooijman, E., Whitehouse, M. and Tullborg, E.L. (2019) Tracing the palaeoredox conditions at Forsmark, Sweden, using uranium mineral geochronology. Chemical Geology, v.506, p.68-78. doi: 10.1016/J.CHEMGEO.2018.12.013
  51. Laaksoharju, M., Ab, G., Smellie, J., Gimeno, M., Auque, L., Gomez, J. and Karnbranslehantering, S. (2004) Hydrogeochemical evaluation of the Simpevarp area, model version 1.1. www.skb.se
  52. Laaksoharju, M., Skarman, C. and Skarman, E. (1999) Multivariate mixing and mass balance (M3) calculations, a new tool for decoding hydrogeochemical information. Applied Geochemistry, v.14, p.861-871. doi: 10.1016/S0883-2927(99)00024-4
  53. Laaksoharju, M., Smellie, J., Tullborg, E.L., Gimeno, M., Molinero, J., Gurban, I. and Hallbeck, L. (2008) Hydrogeochemical evaluation and modelling performed within the Swedish site investigation programme. Applied Geochemistry, v.23, p.1761-1795. doi: 10.1016/J.APGEOCHEM.2008.02.015
  54. Mariner, P.E., Lee, J.H., Hardin, E.L., Hansen, F.D., Freeze, G.A., Lord, A.S., Goldstein, B. and Price, R.H. (2011) Granite Disposal of U.S. High-Level Radioactive Waste. doi: 10.2172/1029794
  55. Matsumoto, T., Hyodo, H., Saegusa, H., Deguchi, A. and Umeki, H. (2017) Scientific Basis for Nationwide Screening Geological Disposal Sites in Japan. http://www.enecho.meti.go.jp/category/electricity_a
  56. Mazurek, M., Pearson, F.J., Volckaert, J., and Bock, H. (2003) Features, events and processes evaluation catalogue for argillaceous media. Organisation for Economic Co-operation and Development - Nuclear Energy Agency, Paris.
  57. McEwen, T. and Aikas, T. (2000) The site selection process for a spent fuel repository in Finland. Summary Report. Posiva Oy.
  58. Melkior, T., Yahiaoui, S., Motellier, S., Thoby, D. and Tevissen, E. (2005) Cesium sorption and diffusion in Bure mudrock samples. Applied Clay Science, v.29, p.172-186. doi: 10.1016/J.CLAY.2004.12.008
  59. Milnes, A.G. (2002) Swedish deep repository siting programme - Guide to the documentation of 25 years of geoscientific research (1976-2000). Technical Report TR-02-18, SKB.
  60. NAGRA (2010) Annual Report 2010, Wettingen, Switzerland.
  61. NEA and OECD (2003) Engineered barrier systems and the safety of deep geological repositories : state-of-the-art report. OECD Publishing.
  62. Nilsson, A.-C., Ab. G., Tullborg, E.L. and others (2011). Svensk Karnbranslehantering AB. SFR site investigation Bedrock Hydrogeochemistry. Report, SKB. www.skb.se.
  63. Nordstrom, D.K., Andrews, J.N. and Fritz, P. (1985) Hydrogeological and Hydrogeochemical Investigations in Boreholes. Final report of the phase I. Geochemical investigations of the Stripa groundwaters. Technical Report, SKB.
  64. Nuclear Energy Agency (2013) Underground Research laboratories (URL). www.oecd-nea.org
  65. NUMO (2004) Evaluating Site Suitability for a HLW Repository Scientific Background and Practical Application of NUMO's Siting Factors.
  66. Ouzounian, G., Harman, A., Labalette, T. and Dupuis, M.-C. (2014) Cigeo, the Project for Geological Disposal Project of Radioactive Waste in France.
  67. Pitkanen, P., Partamies, S., Ahokas, S. and others (2006) Results of Monitoring at Olkiluoto in 2006. Hydrogeochemistry. Posiva Technical Report, POSIVA-WR-07-51.
  68. Posiva Oy (2001) Hydrochemical stability of groundwaters surrounding a spent nuclear fuel repository in a 100,000 year perspective. Posiva Report 2001-06.
  69. Posiva Oy (2014) Safety case for the disposal of spent nuclear fuel at Olkiluoto - Description of the Disposal System 2012. Posiva Report 2012-05.
  70. Posiva Oy (2010) TKS-2009 nuclear waste management at Olkiluoto and Loviisa power plants: Review of current status and future plans for 2010-2012.
  71. Posiva Oy (2011) Olkiluoto Site Description 2011.
  72. Pruess, K., Faybishenko, B. and Bodvarsson, G.S. (1999) Alternative concepts and approaches for modeling flow and transport in thick unsaturated zones of fractured rocks. Journal of Contaminant Hydrology, v.38, p.281-322. doi: 10.1016/S0169-7722(99)00018-2
  73. Raven, K.G., Sterling, S.N., Jackson, R.E., Avis, J.D. and Clark, I.D. (2010) Geoscientific site characterization of the proposed Deep Geologic Repository, Tiverton, Ontario.
  74. Raven, K., Mccreath, D., Jackson, R., Clark, I., Heagle, D., Sterling, S. and Avis, J. (2010) Descriptive Geosphere Site Model, Deep Geologic Repository Bruce Nuclear Site. Intera Report.
  75. Raven, K., Sterling, S., Gaines, S., Wigston, A. and Frizzell, R. (2009) Regional and site geological frameworks-proposed Deep Geologic Repository, Bruce County, Ontario. www.nwmo.ca/dgr
  76. Ritcey, A.C. and Wu, Y.S. (1999) Evaluation of the effect of future climate change on the distribution and movement of moisture in the unsaturated zone at Yucca Mountain, NV. Journal of Contaminant Hydrology, v.38, p.257-279. doi: 10.1016/S0169-7722(99)00017-0
  77. Russell, D.J., Gale, J.E. (1982) Radioactive Waste Disposal in the Sedimentary Rocks of Southern Ontario. Geoscience Canada, v.9, p.200-207.
  78. Sadekin, S., Zaman, S., Mahfuz, M. and Sarkar, R. (2019) Nuclear power as foundation of a clean energy future: A review. Energy Procedia, v.160, p.513-518. doi: 10.1016/J.EGYPRO.2019.02.200
  79. Sahlstedt, E. (2015) Stable isotope composition of mineral proxies as a record of fluid evolution in fractured bedrock, the Olkiluoto site, Finland. http://ethesis.helsinki.fi
  80. Sahlstedt, E., Karhu, J.A. and Pitkanen, P. (2010) Indications for the past redox environments in deep groundwaters from the isotopic composition of carbon and oxygen in fracture calcite, Olkiluoto, SW Finland. Isotopes in Environmental and Health Studies, v.46, p.370-391. doi: 10.1080/10256016.2010.505981
  81. Sahlstedt, E., Karhu, J. and Rinne-Garmston, K.T. (2012) Fracture Mineral Investigations at Olkiluoto in 2010: Implications to Paleohydrogeology. Posiva Report 94. doi: 10.13140/RG.2.1.3389.7683
  82. Salonen, T., Lamminmaki, T., Fraser, K. and Pastina, B. (2020) Status report of the Finnish spent fuel geologic repository programme and ongoing corrosion studies. v.72, p.14-24. doi: 10.1002/maco.202011805
  83. Schneeberger, R., Kober, F., Lanyon, G.W., Mader, U.K., Spillmann, T. and Blechschmidt, I. (2019) Grimsel Test Site: Revisiting the site-specific geoscientific knowledge. www.nagra.ch
  84. Schneeberger, R., Mader, U.K. and Waber, H.N. (2017) Hydro-chemical and Isotopic (δ2H, δ18O, 3H) Characterization of Fracture Water in Crystalline Rock (Grimsel, Switzerland). Procedia Earth and Planetary Science, v.17, p.738-741. doi: 10.1016/J.PROEPS.2016.12.187
  85. Seitsamo-Ryynanen, M., Karhu, J.A., Pitkanen, P. and Whitehouse, M. (2022) Isotopic signatures of precent-day calcite and pyrite in low-temperature crystalline bedrock, Olkiluoto, SW Finland. Applied Geochemistry, v.141, article105308. doi: 10.1016/j.apgeochem.2022.105308
  86. Siren, T. (2017) Overview of Finnish Spent Nuclear Fuel Disposal Programme. Journal of the Korean Society of Mineral and Energy Resources Engineers, v.54, p.367-376. doi: 10.12972/ksmer.2017.54.4.367
  87. Smellie, J.A.T. (1999) Evaluation of the quality of groundwater sampling: experience derived from radioactive waste disposal programmes in Sweden and Finland during 1980-1992. Posiva.
  88. Smellie, J., Larsson, N.-A., Wikberg, P. and Carlsson, L. (1985) Hydrochemical investigations in crystalline bedrock in relation to existing hydraulic conditions: Experience from the SKB test-sites in Sweden. Technical Report 85-11, SKB.
  89. Smellie, J., Pitkanen, P., Koskinen, L., Aaltonen, I., Eichinger, F., Waber, N., Sahlstedt, E., Siitari-Kauppi, M., Karhu, J., Lofman, J. and Poteri, A. (2014) Evolution of the Olkiluoto Site: Palaeo-hydrogeochemical Considerations. Working Report 2014-27, IAEA.
  90. Sonnenthal, E. L. and Bodvarsson, G.S. (1999) Constraints on the hydrology of the unsaturated zone at Yucca Mountain, NV from three-dimensional models of chloride and strontium geochemistry. Journal of Contaminant Hydrology, v.38, p.107-156. doi: 10.1016/S0169-7722(99)00013-3
  91. Strom, A., Andersson, J., Skagius, K. and Winberg, A. (2008) Site descriptive modelling during characterization for a geological repository for nuclear waste in Sweden. Applied Geochemistry, v.23, p.1747-1760. doi: 10.1016/J.APGEOCHEM.2008.02.014
  92. Suksi, J., Tullborg, E.-L., Pidchenko, I., Krall, L., Sandstrom, B., Kaksonen, K., Vitova, T., Kvashnina, K. O. and Gottlicher, J. (2021) Uranium remobilisation in anoxic deep rock-groundwater system in response to late Quaternary climate changes - Results from Forsmark, Sweden. Chemical Geology, v.584, p.120551. doi: 10.1016/j.chemgeo.2021.120551
  93. Sung, K.Y., Yun, S.T., Park, M.E., Koh, Y.K., Choi, B.Y., Hutcheon, I. and Kim, K.H. (2012). Reaction path modeling of hydrogeochemical evolution of groundwater in granitic bedrocks, South Korea. Journal of Geochemical Exploration, v.118, p.90-97. doi: 10.1016/J.GEXPLO.2012.05.004
  94. Swift, P.N. and Bonano, E.J. (2016) Geological disposal of nuclear waste in tuff: Yucca Mountain (USA). Elements, v.12, p.263-268. doi: 10.2113/gselements.12.4.263
  95. Tullborg, E.L., Drake, H. and Sandstrom, B. (2008) Palaeohydrogeology: a methodology based on fracture mineral studies. Applied Geochemistry, v.23, p.1881-1897. doi: 10.1016/J.APGEOCHEM.2008.02.009
  96. Tullborg, E.L. and Larson, S.A. (1984) δ18O and δ13C for limestones, calcite fissure infillings and calcite precipitates from Sweden. Geologiska Foreningen i Stockholm Forhandlingar, v.106, p.127-130. doi: 10.1080/11035898409454622
  97. Tullborg, E.-L. and Drake, H. (2009). Bedrock hydrogeochemistry Laxemar - Site descriptive modelling, SDM-Site Laxemar. www.skb.se
  98. Tullborg, E.-L., Suksi, J., Geipel, G., Krall, L., Auque, L., Gimeno, M. and Puigdomenech, I. (2017) The Occurrences of Ca2UO2(CO3)3 Complex in Fe(II) Containing Deep Groundwater at Forsmark, Eastern Sweden. Procedia Earth and Planetary Science, v.17, p.440-443. doi: 10.1016/J.PROEPS.2016.12.111
  99. Vira, J. (2017) Geological repository for high-level nuclear waste becoming reality in Finland. In Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste (pp. 645-666). Elsevier. doi: 10.1016/B978-0-08-100642-9.00023-2
  100. Vomvoris, S., Claudel, A., Blechschmidt, I. and Muller, H.R. (2013) The Swiss Radioactive Waste Management Program - Brief History, Status, and Outlook. Journal of Nuclear Fuel Cycle and Waste Technology, v.1, p.9-27. doi: 10.7733/jnfcwt.2013.1.1.9
  101. von Berlepsch, T and Haverkamp, B. (2016) Salt as a host rock for the geological repository for nuclear waste. Elements, v.12, p.257-262. doi: 10.2113/gselements.12.4.257
  102. Waber, H.N., Gimmi, T. and Smellie, J.A.T. (2012) Reconstruction of palaeoinfiltration during the Holocene using porewater data (Laxemar, Sweden). Geochimica et Cosmochimica Acta, v.94, p.109-127. doi: 10.1016/j.gca.2012.06.030
  103. Wallin, B. and Peterman, Z. (1999) Calcite fracture fillings as indicators of paleohydrology at Laxemar at the Aspo Hard Rock Laboratory, southern Sweden. Applied Geochemistry, v.4, p.953-962. doi: 10.1016/S0883-2927(99)00028-1
  104. Wersin, P. (2003) Geochemical modelling of bentonite porewater in high-level waste repositories. Journal of Contaminant Hydrology, v.61, p.405-422. doi: 10.1016/S0169-7722(02)00119-5
  105. Wersin, P., Johnson, L.H. and McKinley, I.G. (2007) Performance of the bentonite barrier at temperatures beyond 100 ℃: A critical review. Physics and Chemistry of the Earth, Parts A/B/C, v.32, p.780-788. doi: 10.1016/J.PCE.2006.02.051
  106. White, A.F., Bullen, T.D., Vivit, D.V., Schulz, M.S. and Clow, D.W. (1999) The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochimica et Cosmochimica Acta, v.63, p.1939-1953. doi: 10.1016/S0016-7037(99)00082-4
  107. White, A.F., Schulz, M.S., Lowenstern, J.B., Vivit, D.V. and Bullen, T.D. (2005) The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis. Geochimica et Cosmochimica Acta, v.69, p.1455-1471. doi: 10.1016/j.gca.2004.09.012
  108. Witherspoon, P.A. (2000) The Stripa project. International Journal of Rock Mechanics and Mining Sciences, v.37, p.385-396. doi: 10.1016/S1365-1609(99)00113-6
  109. Wu, Y. S., Ritcey, A. C. and Bodvarsson, G.S. (1999) A modeling study of perched water phenomena in the unsaturated zone at Yucca Mountain. Journal of Contaminant Hydrology, v.38, p.157-184. doi: 10.1016/S0169-7722(99)00015-7
  110. Yang, I.C., Yu, P., Rattray, G.W., Ferarese, J.S. and Ryan, J.N. (1998) Hydrochemical Investigations in Characterizing the Unsaturated Zone at Yucca Mountain, Nevada. Water-Resources Investigation Report 98-4132. USGS. doi: 10.2172/677016
  111. Zhang, M., Zhang, H., Cui, S., Jia, L., Zhou, L. and Chen, H. (2012) Engineering properties of GMZ bentonite-sand as buffer/backfilling material for high-level waste disposal. European Journal of Environmental and Civil Engineering, v.16, p.1216-1237. doi: 10.1080/19648189.2012.690934