DOI QR코드

DOI QR Code

서천 해안지역 길산천 소유역에서의 고염분 지하수와 씻김 현상

Fossil Saline Groundwater and Their Flushing Out At Gilsan Stream Catchment in the Western Coastal Area of Seocheon, Korea

  • 문상호 (한국지질자원연구원 기후변화대응연구본부 지하수환경연구센터) ;
  • 윤윤열 (강원대학교 지질학과) ;
  • 이진용 (강원대학교 지질학과)
  • Sang-Ho, Moon (Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Yoon Yeol, Yoon (Department of Geology, Kangwon National University) ;
  • Jin-Yong, Lee (Department of Geology, Kangwon National University)
  • 투고 : 2022.12.15
  • 심사 : 2022.12.23
  • 발행 : 2022.12.28

초록

우리나라 서·남해 연안 지대는 해안으로부터 10 km 범위 내 관정의 약 47%가 해수의 영향을 받은 것으로 보고되었고, 지하수의 염분화 원인이 해수 침투 때문일 것이라 해석되어 왔다. 서천지역의 길산천은 금강하구둑이 건설·운영되어 매립 농지로 이용되기 전까지는 감조하천으로서 유역 내에는 해수에 의한 퇴적물이 생성되고 그 내부에는 염분 공극수가 존재했을 것으로 추정된다. 길산천 소유역 내 지하수는 EC 값이 111~21,000 µS/cm 범위로서 매우 높은 염분 지하수가 존재하며, 수질 유형은 Ca(or Na)-HCO3, Ca(or Na)-HCO3(Cl), Na-Cl(HCO3), Na-Cl 등 다양하게 나타나고 있다. 이러한 수질의 다양성은 강수 및 지표수로부터 유입 생성되는 담수 지하수 수질과 해수 수질의 혼합 현상 때문에 기인되는 것으로 판단된다. 금번 연구에서는 이러한 수질 다양성 및 염분 지하수의 존재가 현재 진행 중인 해수 침투 때문인지 아니면 조간대 퇴적물 내 고(古)염분 공극수가 씻겨나가는 과정에서 잔존하기 때문인지를 논의하였다. 이를 위해, 연구지역 내 강수, 지표수, 해수, 지하수에 대하여 수질 특성을 비교하고, 삼중수소 함량, 산소/수소 안정동위원소 조성, 87Sr/86Sr 비 등을 비교·검토하였다. 산소/수소 안정동위원소 조성으로 볼 때, EC 값이 큰 염분 지하수들의 물 성분은 담수 지하수와 지표수 물이 혼합된 물로 구성되어 있으며, 삼중수소 함량에 의해 추정되는 연령이 젊은 지하수들은 NO3 함량이 높은 지표 영향을 많이 받은 것들로 나타나, 연구지역의 지하수 수질 진화 과정에는 담수 지하수 및 지표수가 지속적으로 영향을 미치고 있는 것으로 나타났다. 또한, 담수 지하수/지표수와 해수를 2개의 단성분으로 가정하고 Cl 함량 변화에 따른 Na/Cl ratio와 나트륨흡착도(SAR)의 변화 패턴을 고려하면, 연구지역 지하수들은 해수 침투가 아니라 고염분 지하수의 씻김 현상을 겪고 있는 것으로 해석되었다.

It has been reported that about 47% of groundwater wells within 10 km from the coastline in the western/southern coastal areas of Korea were affected by seawater. It has been interpreted that the cause of groundwater salinization is seawater intrusion. The Gilsan stream in the Seocheon area was a tidal stream until the Geumgang estuary dam was constructed and operated. Therefore, it is likely that the Gilsan stream catchment was deposited with sediments containing high-saline formation water prior to the use of landfill farmland at this catchment area. The groundwater in this study area showed EC values ranging from 111 to 21,000 µS/cm, and the water quality types were diverse including Ca(or Na)-HCO3, Ca(or Na)-HCO3(Cl), Na-Cl(HCO3), Na-Cl types. It is believed that this diversity of water quality is due to the mixing of seawater and fresh groundwater generated by infiltration of precipitation and surface water through soil and weathered part. In this study, we discussed whether this water quality diversity and the presence of saline groundwater are due to present seawater intrusion or to remnant high-saline pore water in sediments during flushing out process. For this, rain water, surface water, seawater, and groundwater were compared regarding the water quality characteristics, tritium content, oxygen/hydrogen stable isotopic composition, and 87Sr/86Sr ratio. The oxygen/hydrogen stable isotopic compositions indicated that water composition of saline groundwaters with large EC values are composed of a mixture of those of fresh groundwater and surface water. Also, the young groundwater estimated by tritium content has generally higher NO3 content. All these characteristics showed that fresh groundwater and surface water have continued to affect the high-saline groundwater quality in the study area. In addition, considering the deviation pattern in the diagrams of Na/Cl ratio versus Cl content and SAR (sodium adsorption ratio) versus Cl content, in which two end members of fresh surface-ground water and seawater are assumed, it is interpreted that the groundwater in the study area is not experiencing present seawater intrusion, but flush out and retreating from ancient saline formation water.

키워드

과제정보

이 연구는 한국지질자원연구원의 기본사업 "기후변화대응 대용량지하수 확보 및 최적활용 기술개발(GP2020-012)"의 지원을 받아 수행되었습니다. 이 논문을 심사하여 주신 익명의 심사위원들께 감사의 말씀을 드립니다.

참고문헌

  1. Aberg, G., Jacks, G., Wickman, T. and Hamilton, D.J. (1990) Strontium isotopes in trees as an indicator for calcium availability, Catena, v.17, Issue 1, p.1-11. https://doi.org/10.1016/0341-8162(90)90011-2.
  2. Akouvi, A., Dray, M., Violette, S., de Marsily, G. and Zuppi, G.M. (2008) The sedimentary coastal basin of Togo: example of a multilayered aquifer still influenced by a palaeo-seawater intrusion. Hydrogeology Journal, v.16, p.419-436. doi: 10.1007/s10040-007-0246-1.
  3. Badaruddin, S., Werner, A. and Morgan, L.K. (2015) Water table salinization due to seawater intrusion. Water Resrouces Research, v.51, issue10, p.8397-8408. doi: 10.1002/2015WR017098
  4. Badeenezhad, A., Tabatabaee, H.R., Nikbakht, H.-A., Radfard, M., Abbasnia, A., Baghapour, M.A. and Alhamd, M. (2020) Estimation of the groundwater quality index and investigation of the affecting factors their changes in Shiraz drinking groundwater, Iran. Groundwater for Sustainable Development, v.11, 100435. https://doi.org/10.1016/j.gsd.2020.100435
  5. Barker, A.P., Newton, R.J., Bottrell, S.H. and Tellam, J.H. (1998) Processes affecting groundwater chemistry in a zone of saline intrusion into an urban sandstone aquifer. Applied Geochemisty, v.13, Issue6, p.735-749. https://doi. org/10.1016/S0883-2927(98)00006-7.
  6. Boufekane, A., Maizi, D., Madene, E., Busico, G. and Zghibi, A. (2022) Hydridization of GALDIT method to assess actural and future coastal vulnerability to seawater incrusion. Journal of Environmental management, v.318, 115580. https://doi.org/10.1016/j.jenvman.2022.115580.
  7. Calvache, M.I. and Pulido-Bosch, A. (1997) Effects of geology and human activity on the dynamics of salt-water intrusion in three coastal aquifers in southern Spain. Environ. Geol., v.30, p.215-223. https://doi.org/10.1007/ s002540050149.
  8. Cao, T., Han, D. and Song, X. (2021) Past, present, and future of global seawater intrusion research: A bibliometric analysis. Journal of Hydrology, v.603, 126844. https://doi.org/10.1016/j.jhydrol.2021.126844.
  9. Chi, S.J., Chang, H.W., Kim, N.H., Kim, T.G. and Yun, W. (2003) Water quality and stable isotope study for the brachish groundwater at Yeongkwang coastal area. Proceedings of Spring Academic Meeting of Korea Soc. Econ. Environ. Geol., Chonnam Nat'l Univ., Yongbong Culture Center, Abstract Book, p.103-107.
  10. Clark, I.D. and Fritz, P. (1997) Environmental isotopes in hydrogeology, Lewis Publishers, New York, 328p.
  11. Craig, H. (1961) Isotopic variations in meteoric waters. Science, v.133, Issue 3465, p.1702-1703. DOI:10.1126/science.133.3465.1702
  12. Devic, G., Djordjevic, D. and Sakan, S. (2014) Natural and anthropogenic factors affecting the groundwater quality in Serbia. Science of the Total Environment, v.468-469, p.933-942. doi:10.1016/j.scitotenv.2013.09.011
  13. Epstein, S. and Mayeda, T.K. (1953) Variations of the 18O content of waters from natural sources. Geochim. et Cosmochim. Acta, v.4, p.213-224. https://doi.org/10.1016/0016-7037(53)90051-9.
  14. Faure G. and Powell J.L. (1972) Strontium Isotope Geology. Springer-Verlag Berlin, Heidelberg, New York, 188p.
  15. Freeman, J.T. (2007) The use of bromide and chloride mass ratio to differentiate salt-dissolution and formation brines in shallow groundwater of the Western Canadian Sedimentary Basin. Hydrogeol. J., v.15, p.1377-1385. DOI 10.1007/s10040-007-0201-1
  16. Gosselin, D.C., Harvey, F.E., Frost, C., Stotler, R. and Macfarlane, P.A. (2004) Strontium isotope geochemistry of groundwater in the central part of the Dakota (Great Plains) aquifer, USA. Appl. Geochem., v.19, Issue 3, p.359-377. doi:10.1016/S0883-2927(03)00132-X.
  17. Kang, M. and Jackson, R.B. (2016) Salinity of deep groundwater in California: Water quantity, quality, and protection. Proceedings of the National Academy of Sciencse, v.113, n.28, pp.7768-7773. doi: 10.1073/pnas.1600400113
  18. Kim, S.Y. and Koretsky, C. (2013) Effects of road salt deicers on sediment biogeochemistry. Biogeochemistry, v.112, p.343-358. doi: 10.1007/s10533-012-9728-x
  19. Kim, K., Rajmohan, N., Kim, H.J., Hwang, G.-S. and Cho, M.J. (2004) Assessment of groundwater chemistry in a coastal region (Kunsan, Korea) having complex contaminant sources: a stoichiometric approach. Environ. Geol., v.46, p. 763-774. DOI 10.1007/s00254-004-1109-x.
  20. Lee, B.J. and Hwang, S.H. (2008) Evaluation of characteristics of seawater intrusion based on the groundwater fluctuations: Baeksu area, Yeonggwang -gun, J. Geol. Soc. Korea, v.44, No.2, p.233-240.
  21. Lee, B.J. and Moon, S.H. (2008) Integrated approach for evaluating the characteristics of seawater intrusion using factor analysis and time series analysis: Seocheon-Gunsan area. J. Geol. Soc. Korea, v.44, No.2, p.219-232.
  22. Martinelli, L.A., Victoria, R.L., Stemberg, L.S.L., Ribeiro, A. and Moreira, M.Z. (1996) Using stable isotopes to determine sources of evaporated water to the atmosphere in the Amazon basin. J. Hydrol., v.183, p.191-204. https://doi.org /10.1016/0022-1694(95)02974-5.
  23. Martinez, D. and Bocanegra, E. (2002) Hydrogeochemistry and cation-exchange processes in the coastal aquifer of Mar Del Plata, Argentina. Hydrogeol. J., v.10, p.393-408. https://doi.org/10.1007/s10040-002-0195-7.
  24. Mason, B. and Moore, C.B. (1982) Principles of geochemistry. 4th edition. John Wiley & Sons, 344p.
  25. Mercado, A. (1985) The use of hydrogeochemical patterns in carbonate sand and sandstone aquifers to identify intrusion and flushing of saline water. Ground Water, v.23, No.5, p.635-645.https://doi.org/10.1111/j.1745-6584.1985.tb01512.x.
  26. MOCT(Ministry of Counstruction and Transportation), KOWACO (Korea Water Resources Development Corporation) and KIGAM (Korea Institute of Geoscience and Mineral Resources) (2003) Basic Groundwater Survey Report for Seocheon- Gunsan Area, 237p.
  27. Moon, S.H., Cho S.H., Lee K.S. and Yun U. (2007) The variation of oxygen and hydrogen isotopic composition in precipitation and geothermal waters from the Yuseong Catchment. Econ. Environ. Geol., v.40, No.4, p.389-401.
  28. Moon, S.H., Lee B.J., Park K.G. and Ko K.S. (2009) Hydrogeochemical characteristics and occurrences of high-saline ground water at Seocheon area, Korea. Econ. Environ. Geol., v.42, No.3, p.235-246.
  29. Morrison, J., Brockwell, T., Merren, T., Fourel, F. and Phillips, A.M. (2001) On-line high precision stable hydrogen isotopic analyses on nanoliter water samples. Analytical Chem., v.73, p.3579-3575. https://doi.org/10.1021/ac001447t.
  30. MOST(Ministry of Science and Technology) and KIGAM(Korea Institute of Geoscience and Mineral Resources) (2003) Development of the techniques for assessment, prediction and prevention of seawater intrusion. Report No. 00-J-ND-01-B-14, 233p.
  31. MOST(Ministry of Science and Technology) and KIGAM(Korea Institute of Geoscience and Mineral Resources) (2006) Mitigation of seawater intrusion problems. Report No. OAA2004031-2006(3), 227p.
  32. Ozler, M.H. (2003) Hydrochemistry and salt-water intrusion in the Van aquifers, east Turkey. Environ. Geol., v.43, p.759-775. https://doi.org/10.1007/ s00254-002-0690-0
  33. Park, S.C., Yun, S.T., Chae, G.T. and Lee, S.K. (2002) Hydrogeochemistry of shallow groundwaters in western coastal area of Korea: a study on seawater mixing in coastal aquifers. Soil and Groundwater Environ., v.7, p.63-77.
  34. Petalas, C.P. and Diamantis, I.B. (1999) Origin and distribution of saline groundwters in the upper Miocene aquifer system, coastal Rhodope area, northern Greece. Hydrogeol. J., v.7, p.305-316. https://doi.org/10.1007/ s100400050204
  35. Pool, M. and Carrera, J. (2010) Dynamics of negative hydraulic barriers to prevent seawater intrusion. Hydrogeology Journal, v.18, p.95-105. doi: 10.1007/s10040-009-0516-1
  36. Redwan, M., Abdel Moneim, A.A., Mohammed, N.E. and Masoud, A.M. (2020) Sources and health risk assessments of nitrate in groundwater, West of Tahta area, Sohag, Egypt. Episodes, v.43, n.2, p.751-760. doi: 10.18814/epiiugs/2020/020048
  37. Smith, M.E., Wynn, J.G., Scharping, R.J., Moore, E.W., Garey, J.R. and Onac, B.P. (2021) Source of saline groundwater on tidally influenced blue holes on San Salvador Island, Bahamas. Hydrogeology Journal, v.29, p.429-441. doi: 10.1007/s10040-020-02266-z
  38. Yoon, Y.Y., Cho, S.Y., Lee, K.Y. and Kim, Y. (2007) Low level tritium analysis using liquid scintillation counter. Analytical Sci. & Tech., v.20, No.5, p.419-423.
  39. Yoon, Y.Y., Kim K.J., Lee, K.Y. and Ko K.S. (2010) Tritium concentration in rain with seasonal variation. Analytical Sci. & Tech., v.23, No.2, p.161-164. https://doi.org/10.5806/AST.2010.23.2.161.