DOI QR코드

DOI QR Code

Biocontrol of Maize Diseases by Microorganisms

미생물을 활용한 옥수수병의 생물학적 방제

  • Jung-Ae, Kim (Department of Research and Development, Center for Industrialization of Agriculture and Livestock Microorganisms) ;
  • Jeong-Sup, Song (Department of Research and Development, Center for Industrialization of Agriculture and Livestock Microorganisms) ;
  • Min-Hye, Jeong (Department of Plant Medicine, Suncheon National University) ;
  • Sook-Young, Park (Department of Plant Medicine, Suncheon National University) ;
  • Yangseon, Kim (Department of Research and Development, Center for Industrialization of Agriculture and Livestock Microorganisms)
  • 김정애 ((재)농축산용미생물산업육성지원센터 기술지원팀) ;
  • 송정섭 ((재)농축산용미생물산업육성지원센터 기술지원팀) ;
  • 정민혜 (순천대학교 식물의학과) ;
  • 박숙영 (순천대학교 식물의학과) ;
  • 김양선 ((재)농축산용미생물산업육성지원센터 기술지원팀)
  • Received : 2022.11.08
  • Accepted : 2022.12.19
  • Published : 2022.12.31

Abstract

Zea mays, known as maize or corn, is a major staple crop and an important source of energy for humans and animals, thus ensuring global food security. Approximately 9.4% of the loss of total annual corn production is caused by pathogens including fungi, bacteria, and viruses, resulting in economic losses. Although the use of fungicides is one of the most common strategies to control corn diseases, the frequent use of fungicides causes various health problems in humans and animals. In order to overcome this problem, an eco-friendly control strategy has recently emerged as an alternative way. One such eco-friendly control strategy is the use of beneficial microorganisms in the control of plant pathogens. The beneficial microorganisms can control the plant pathogens in various ways, such as spatial competition with plant pathogens, inhibition of fungal or bacterial growth via the production of secondary metabolites or antibiotics, and direct attack to plant pathogens via enzyme activity. Here, we reviewed microorganisms as biocontrol agents against corn diseases.

Keywords

Acknowledgement

This work was supported by a grant from the Rural Development Administration (PJ0152782022).

References

  1. Anahosur, K. H. and Patil, S. H. 1980. Chemical control of sorghum downy mildew in India. Plant Dis. 64: 1004-1006. https://doi.org/10.1094/PD-64-1004
  2. Azcon-Aguilar, C. and Barea, J. M. 1997. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens: an overview of the mechanisms involved. Mycorrhiza 6: 457-464. https://doi.org/10.1007/s005720050147
  3. Bais, H. P., Park, S.-W., Weir, T. L., Callaway, R. M. and Vivanco, J. M. 2004. How plants communicate using the underground information superhighway. Trends Plant Sci. 9: 26-32. https://doi.org/10.1016/j.tplants.2003.11.008
  4. Bathke, K. J., Jochum, C. C. and Yuen, G. Y. 2022. Biological control of bacterial leaf streak of corn using systemic resistance-inducing Bacillus strains. Crop Prot. 155: 105932.
  5. Berg, G., Koberl, M., Rybakova, D., Muller, H., Grosh, R. and Smalla, K. 2017. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol. Ecol. 95: fix050.
  6. Blacutt, A. A., Gold, S. E., Voss, K. A., Gao, M. and Glenn, A. E. 2018. Fusarium verticllioides: advancements in understanding the toxicity, virulence, and niche adaptations of a model mycotoxigenic pathogen of maize. Phytopathology 108: 312-326. https://doi.org/10.1094/PHYTO-06-17-0203-RVW
  7. Bressan, W. and Figueiredo, J. E. F. 2007. Efficacy and dose-response relationship in biocontrol of Fusarium disease in maize by Streptomyces spp. Eur. J. Plant Pathol. 120: 311-316. https://doi.org/10.1007/s10658-007-9220-y
  8. Budi, S. W., van Tuinen, D., Arnould, C., Dumans-Gaudot, E., Gianinazzi-Pearson, V. and Gianinazzi, S. 2000. Hydrolytic enzyme activity of PaeniBacillus sp. strain B2 and effects of th antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl. Soil Ecol. 15: 191-199. https://doi.org/10.1016/S0929-1393(00)00095-0
  9. Castro del Angel, E., Sanchez Arizpe, A., Galindo Cepeda, M. E. and Vazquez Badillo, M. E. 2020. Biological control of ear rot on maize genotypes with Trichoderma species. Rev. Bio. Cienc. 7: e965.
  10. Chandra Nayaka, C., Uday Shankar, A. C., Reddy, M. S., Niranjana, S. R., Prakash, H. S., Shetty, H. S. et al. 2009. Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens. Pest. Manag. Sci. 65: 769-775. https://doi.org/10.1002/ps.1751
  11. Chandra Nayaka, S., Niranjana, S. R., Uday Shankar, A. C., Niranjan Raj, S., Reddy, M. S., Prakash, H. S. et al. 2010. Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize. Arch. Phytopathol. Plant Prot. 43: 264-282. https://doi.org/10.1080/03235400701803879
  12. Chen, B., Han, H., Hou, J., Bao, F., Tan, H., Lou, X. et al. 2022. Control of maize sheath blight and elicit induced systemic resistance using PaeniBacillus polymyxa strain SF05. Microorganisms 10: 1318.
  13. Chet, I. & Inbar, J. 1994. Biological control of fungal pathogens. Appl. Biochem. Biotechnol. 48: 37-43. https://doi.org/10.1007/BF02825358
  14. Compant, S., Duffy, B., Nowak, J., Clement, C. and Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  15. Dang, L., Li, G., Yang, Z., Luo, S., Zheng, X. and Zhang, K. 2010. Chemical constituents from the endophytic fungus Trichoderma ovalisporum isolated from Panax notoginseng. Ann. Microbiol. 60: 317-320. https://doi.org/10.1007/s13213-010-0043-2
  16. Degani, O. and Dor, S. 2021. Trichoderma biological control to protect sensitive maize hybrids against late wilt disease in the field. J. Fungi 7: 315.
  17. Djaenuddin, N., Sebayang, A., Nonci, N. and Muis, A. 2021. Compatibility of biocontrol agent formulas and synthetic fungicides in controlling maydis leaf blight on corn caused by Bipolaris maydis. IOP Conf. Ser. Earth Environ. Sci. 911: 012062.
  18. Djaenuddin, N., Suriani and Muis, A. 2020. Effectiveness of Bacillus subtilis TM4 biopesticide formulation as biocontrol agent against maydis leaf blight disease on corn. IOP Conf. Ser. Earth Environ. Sci. 484: 012096.
  19. Fandohan, P., Hell, K., Marasas, W. F. O. and Wingfield, M. J. 2003. Infection of maize by Fusarium species and contamination with fumonisin in Africa. Afr. J. Biotechnol. 2: 570-579. https://doi.org/10.5897/AJB2003.000-1110
  20. Figueroa-Lopez, A. M., Cordero-Ramirez, J. D., Martinez-Alvarez, J. C., Lopez-Meyer, M., Lizarraga-Sanchez, G. J., Felix-Gastelum, R. et al. 2016. Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. Springerplus 5: 330.
  21. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117. https://doi.org/10.1139/m95-015
  22. Golob, P., Kutukwa, N., Devereau, A., Bartosik, R. E. and Rodriguez, J. C. 2004. Maize. In: Crop Post-harvest: Science and Technology. Vol. 2. Durables, eds. by R. Hodges and G. Farrell, pp. 26-59. Blackwell Publishing Ltd., Ames, IW, USA.
  23. Gruber, S., Omann, M., Rodriguez, C. E., Radebner, T. and Zeilinger, S. 2012. Generation of Trichoderma atroviride mutants with constitutively activated G protein signaling by using genetic in resistance as selection marker. BMC Res. Notes 5: 641.
  24. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. and Lorito, M. 2004. Trichoderma species: opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2: 43-56. https://doi.org/10.1038/nrmicro797
  25. Heimpel, G. E. and Mills, N. J. 2017. Biological Control: Ecology and Applications. Cambridge University Press, Cambridge, UK. 386 pp.
  26. Hernandez-Rodriguez, A., Heydrich-Perez, M., Acebo-Guerrero, Y., Velazquez-del Valle, M. G. and Hernandez-Lauzardo, A. N. 2008. Antagonistic activity of Cuban native rhizobacteria against Fusarium verticillioides (Sacc.) Nirenb. in maize (Zea mays L.). Appl. Soil. Ecol. 39: 180-186. https://doi.org/10.1016/j.apsoil.2007.12.008
  27. Hung, R., Lee, S. & Bennett, J. W. 2013. Arabidopsis thaliana as a model system for testing the effects of Trichoderma volatile organic compounds. Fungal Ecol. 6: 19-26. https://doi.org/10.1016/j.funeco.2012.09.005
  28. Isakeit, T. and Jaster, J. 2005. Texas has a new pathotype of Peronosclerospora sorghi, the cause of sorghum downy mildew. Plant Dis. 89: 529.
  29. Jackson, T. A., Harveson, R. M. and Vidaver, A. K. 2007. Reemergence of Goss's wilt and blight of corn to the central high plains. Plant Health Prog. Online publication. https://doi.org/10.1094/PHP-2007-0919-0.
  30. Jardine, D. J., and Claflin, L. E. 2016. Goss's bacterial wilt and leaf blight. In: Compendium of Corn Diseases, eds. by G. P. Munkvold and D. G. White, 4th ed., p. 165. APS Press, St. Paul, MN, USA.
  31. Khosravi, A. R., Mansouri, M., Bahonar, A. R. and Shokri, H. 2007. Mycoflora of maize harvested from Iran and imported maize. Pak. J. Biol. Sci. 10: 4432-4437. https://doi.org/10.3923/pjbs.2007.4432.4437
  32. Kutawa, A. B., Ahmad, K., Ali, A., Hussein, M. Z., Wahab, M. A. A. and Sijam, K. 2021. State of the art on southern corn leaf blight disease incited by Cochliobolus heterostrophus: detection, pathogenic variability and novel control measures. Bulg. J. Agric. Sci. 27: 147-155.
  33. Lee, S., Hung, R., Yap, M. and Bennett, J. W. 2015. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch. Microbiol. 197: 723-727. https://doi.org/10.1007/s00203-015-1104-5
  34. Lee, S., Yap, M., Behringer, G., Hung, R. and Bennett, J. W. 2016. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 3: 7.
  35. Lerda, P., Blaggi, M. B., Peralta, N., Ychari, S., Vazquez, M. and Bosio, G. 2005. Fumonisins in foods from Cordoba (Argentina), presence and genotoxicity. Food Chem. Toxicol. 43: 691-698. https://doi.org/10.1016/j.fct.2004.12.019
  36. Li, B., Kong, L., Qiu, D., Francis, F. and Wang, S. 2021. Biocontrol potential and mode of action of entomopathogenic bacteria Xenorhabdus budapestensis C72 against Bipolaris maydis. Biol. Control 158: 104605.
  37. Lopez-Mondejar, R., Ros, M. and Pascual, J. A. 2011. Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biol. Control 56: 59-66. https://doi.org/10.1016/j.biocontrol.2010.10.003
  38. Maloy, O. C. 2005. Plant disease management. Plant Health Instr. Online publication. https://doi.org/10.1094/PHI-I-2005-0202-01.
  39. Marasas, W. F. 1995. Fumonisins: their implications for human and animal health. Nat. Toxins 3: 193-198. https://doi.org/10.1002/nt.2620030405
  40. Marin, S., Homedes, V., Sanchis, V., Ramos, A. J. and Magan, N. 1999. Impact of Fusarium moniliforme and F. proliferatum colonisation of maize on calorific losses and fumonisin production under different environmental conditions. J. Stored Prod. Res. 35: 15-26. https://doi.org/10.1016/S0022-474X(98)00026-5
  41. Meena, B., Marimuthu, T., Vidyasekaran, P. and Velazhahan, R. 2001. Biological control of root rot of groundnut with antagonistic Pseudomonas fluorescens strains. J. Plant Dis. Prot. 108: 369-381.
  42. Miedaner, T. and Juroszek, P. 2021. Global warming and increasing maize cultivation demand comprehensive efforts in disease and insect resistance breeding in north-western Europe. Plant Pathol. 70: 1032-1046.
  43. Muis, A. and Quimio, A. J. 2006. Biological contorl of banded leaf and sheath blight disease (Rhizoctonia solani Kuhn) in corn with formulated Bacillus subtilis BR23. Indones. J. Agric. Sci. 7: 1-7. https://doi.org/10.21082/ijas.v7n1.2006.p1-7
  44. Munkvold, G. P. 2003. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur. J. Plant Pathol. 109: 705-713. https://doi.org/10.1023/A:1026078324268
  45. Ons, L., Bylemans, D., Thevissen, K. and Cammue, B. P. A. 2020. Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms 8: 1930.
  46. Osdaghi, E., Robertson, A. E., Jackson-Ziems, T. A., Abachi, H., Li, X. and Harveson, R. M. 2022. Clavibacter nebraskensis causing Goss's wilt of maize: five decades of detaining the enemy in the new world. Mol. Plant Pathol. Online publication. https://doi.org/10.1111/mpp.13268.
  47. Pal, K. K. and Gardener, B. M. 2006. Biological control of plant pathogens. Plant Health Instr. Online publication. https://doi.org/10.1094/PHI-A-2006-1117-02.
  48. Pechanova, O. and Pechan, T. 2015. Maize-pathogen interactions: an ongoing combat from a proteomics perspective. Int. J. Mol. Sci. 16: 28429-28448. https://doi.org/10.3390/ijms161226106
  49. Pertot, I., Alabouvette, A., Hinarejos, E. and Franca, S. 2015. The Use of Microbial Biocontrol Agents against Soil-Borne Diseases. EpiAgri, Agriculture & Innovation, Brussels, Belgium. 11 pp.
  50. Piyaboon, O. 2022. Efficacy of Chaetomium globosum as biological control agents for controlling leaf blight of corn. NU. Int. J. Sci. 19: 1-8.
  51. Ragsdale, N. N., Hylin, J. W., Sisler, H. D., Witt, J. M. and Alford, H. 1991. Health and environmental factors associated with agricultural use of fungicides. USDA/States National Pesticide Impact Assessment Program Fungicide Assessment Project 117. URL http://cipm.ncsu.edu/piappud/ [8 November 2022].
  52. Ruiz, N. Wielgosz-Collin, G., Poirier, L., Grovel, O., Petit, K. E., Mohamed-Benkada, M. et al. 2007. New Trichobrachins, 11-residue peptaibols from a marine strain of Trichoderma longibrachiatum. Peptides 28: 1351-1358. https://doi.org/10.1016/j.peptides.2007.05.012
  53. Saravanakumar, K., Li, Y., Yu, C., Wang, Q.-Q., Wang, M., Sun, J. et al. 2017. Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium stalk rot. Sci. Rep. 7: 1771.
  54. Sartori, M., Nesci, A., Formento, A. and Etcheverry, M. 2015. Selection of potential biological control of Exserohilum turcicum with epiphytic microorganisms from maize. Rev. Argent. Microbiol. 47: 62-71. https://doi.org/10.1016/j.ram.2015.01.002
  55. Sartori, M., Nesci, A., Montemarani, A., Barros, G., Garcia, J. and Etcheverry, M. 2017. Preliminary evaluation of biocontrol agents against maize pathogens Exserohilum turcicum and Puccinia sorgh in field assays. Agric. Sci. 8: 1003-1013. https://doi.org/10.4236/as.2017.89073
  56. Schafer, K. S. and Kegley, S. E. 2002. Persistent toxic chemicals in the US food supply. J. Epidemiol. Community Health 56: 813-817. https://doi.org/10.1136/jech.56.11.813
  57. Seyi-Amole, D. O. and Onilude, A. A. 2021. Microbiological control: a new age of maize production. In: Cereal Grains, ed. by A. K. Goyal. Intech Open, London, UK.
  58. Shahbandeh, M. 2020. Corn: statistics & Facts. URL http://www.statista.corn/#dossierSummary_chapter4/ [8 November 2022].
  59. Shifa, H., Gopalakrishnan, C. and Velazhahan, R. 2015. Efficacy of Bacillus subtilis G-1 in suppression of stem rot caused by Sclerotium rolfsii and growth promotion of groundnut. Int. J. Agric. Environ. Biotechnol. 8: 111-118.
  60. Shoda, M. 2002. Bacterial control of plant diseases. J. Biosci. Bioeng. 89: 515-521. https://doi.org/10.1016/S1389-1723(00)80049-3
  61. Sireesha, Y. and Velazhahan, R. 2015. Biological control of downy mildew of maize caused by Peronosclerospora sorghi under environmentally controlled conditions. J. Appl. Nat. Sci. 8: 279-283. https://doi.org/10.31018/jans.v8i1.786
  62. Sitara, U. and Akhter, S. 2007. Efficacy of fungicides, sodium hypochlorite and neem seed powder to control seed borne pathogens of maize. Pak. J. Bot. 39:285-292.
  63. Stockmann-Juvala, H. and Savolainen, K. 2008. A review of the toxic effects and mechanisms of action of fumonisin B1. Hum. Exp. Toxicol. 27: 799-809. https://doi.org/10.1177/0960327108099525
  64. Sturz, A. and Christie, B. R. 2003. Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Tillage Res. 72: 107-123. https://doi.org/10.1016/S0167-1987(03)00082-5
  65. Voss, K. A., Smith, G. W. and Haschek, W. M. 2007. Fumonisins: toxicokinetics mechanism of action and toxicity. Anim. Feed Sci. Technol. 137: 299-325. https://doi.org/10.1016/j.anifeedsci.2007.06.007
  66. Wang, M., Ma, J., Fan, L., Fu, K., Yu, C., Gao, J. et al. 2015. Biological control of southern corn leaf blight by Trichoderma atroviride SG3403. Biocontrol Sci. Technol. 25: 1133-1146. https://doi.org/10.1080/09583157.2015.1036005