DOI QR코드

DOI QR Code

Effect of NCO/OH Ratio and Chain Extender Content on Properties of Polycarbonate Diol-based Waterborne Polyurethane

  • Kim, Eun-jin (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Kwon, Yong Rok (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Chang, Young-Wook (Department of Material Chemical Engineering, Hanyang University) ;
  • Kim, Dong Hyun (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
  • Received : 2022.01.24
  • Accepted : 2022.02.11
  • Published : 2022.03.31

Abstract

Polycarbonate diol-based waterborne polyurethane (WPU) was prepared by prepolymer mixing process. The prepolymer mixture contained the polycarbonate diol, isophorone diisocyanate (IPDI), dimethylol propionic acid, triethylamine, and ethylenediamine (EDA). The NCO/OH ratio in the prepolymer was adjusted by controlling the molar ratio of IPDI, and its effects on the properties of WPU were studied. The structure of WPU was characterized by fourier transform infrared spectroscopy. The average particle size increased and viscosity decreased with increasing NCO/OH ratio and EDA content in WPU. The reduced phase separation between soft and hard segments increased glass transition temperature. The reduction in the thermal decomposition temperature could be attributed to the low bond energy of urethane and urea groups, which constituted the hard segment. Additionally, the polyurethane chain mobility was restricted, elongation decreased, and tensile strength increased. The hydrogen bond between the hard segments formed a dense structure that hindered water absorption.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 지원을 받는 소재부품기술개발사업 (20010566, 수송기기용 VOC-free 수계 투명 코팅 바니쉬 소재 및 공정기술 개발)을 통해 수행되었습니다.

References

  1. F. Xie, Ti. Zhang, P. Bryant, V. Kurusingal, J. M. Colwell, and B. Laycock, "Degradation and stabilization of polyurethane elastomers", Prog. Polym. Sci., 90, 211 (2019). https://doi.org/10.1016/j.progpolymsci.2018.12.003
  2. M. M. Rahman and H. D. Kim, "Synthesis and characterization of waterborne polyurethane adhesives containing different amount of ionic groups (I)", J. Appl. Polym. Sci., 102, 5684 (2006). https://doi.org/10.1002/app.25052
  3. A. Asif and W. Shi, "UV curable waterborne polyurethane acrylate dispersions based on hyperbranched aliphatic polyester: effect of molecular structure on physical and thermal properties", Polym. Adv. Technol., 15, 669 (2004). https://doi.org/10.1002/pat.528
  4. U. Khan, P. May, A. O'Neill, and J. N. Coleman, "Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane", Carbon, 48, 40351 (2010).
  5. L. H. Bao, Y. J. Lan, and S. F. Zhang, "Synthesis and Properties of Waterborne Polyurethane Dispersions with Ions in the Soft Segments", J. Polym. Res., 13, 507 (2006). https://doi.org/10.1007/s10965-006-9073-7
  6. H. Liang, L. Liu, J. Lu, M. Chen, and C. Zhang, "Castor oilbased cationic waterborne polyurethane dispersions: Storage stability, thermo-physical properties and antibacterial properties", Ind. Crops. Prod., 117, 169 (2018). https://doi.org/10.1016/j.indcrop.2018.02.084
  7. K. L. Noble, "Waterborne polyurethanes", Prog. Org. Coat., 32, 131 (1997). https://doi.org/10.1016/S0300-9440(97)00071-4
  8. B. K. Kim, "Aqueous polyurethane dispersions", Colloid. Polym. Sci., 274, 599 (1996). https://doi.org/10.1007/BF00653056
  9. H. C. Kuan, C. C. M. Ma, W. P. Chang, S. M. Yuen, H. H. Wu, and T. M. Lee, "Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite", Compos. Sci. Technol., 65, 1703 (2005). https://doi.org/10.1016/j.compscitech.2005.02.017
  10. M. Melchiors, M. Sonntag, C. Kobusch, and E, Jurgens, "Recent developments in aqueous two-component polyurethane (2K-PUR) coatings", Prog. Org. Coat., 40, 99 (2000). https://doi.org/10.1016/S0300-9440(00)00123-5
  11. C. Y. Bai, X. Y. Zhang, J. B. Dai, and C.Y. Zhang, "Water resistance of the membranes for UV curable waterborne polyurethane dispersions", Prog. Org. Coat., 59, 331 (2007). https://doi.org/10.1016/j.porgcoat.2007.05.003
  12. T. Artham and M. Doble, "Fouling and Degradation of Polycarbonate in Seawater: Field and Lab Studies", J. Polym. Environ., 17, 170 (2009). https://doi.org/10.1007/s10924-009-0135-x
  13. K. W. Cheng and S. H. Hsu, "A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles", Int. J. Nanomedicine., 12, 1775 (2017). https://doi.org/10.2147/IJN.S120290
  14. C. H. Yang, H. J. Yang, T. C. Wen, M. S. Wu, and J. S. Chang, "Mixture design approaches to IPDI-H6XDI-XDI ternary diisocyanate-based waterborne polyurethanes", Polymer, 40, 871 (1999). https://doi.org/10.1016/S0032-3861(98)00300-0
  15. N. Kebir, I. Campistron, A. Laguerre, J. F. Pilard, C. Bunel, J. P. Couvercelle, and C. Gondard, "Use of hydroxytelechelic cis-1,4-polyisoprene (HTPI) in the synthesis of polyurethanes (PUs). Part 1. Influence of molecular weight and chemical modification of HTPI on the mechanical and thermal properties of PUs", Polymer, 46, 6869 (2005). https://doi.org/10.1016/j.polymer.2005.05.106
  16. V. Garcia-Pacios, V. Costa, M. Colera, and J. M. Martin-Martinez, "Affect of polydispersity on the properties of waterborne polyurethane dispersions based on polycarbonate polyol", Int. J. Adhes. Adhes., 30, 456 (2010). https://doi.org/10.1016/j.ijadhadh.2010.03.006
  17. Y. H. Guo, J. J. Guo, H. Miao, L. J. Teng, and Z. Huang, "Properties and paper sizing application of waterborne polyurethane emulsions synthesized with isophorone diisocyanate", Prog. Org. Coat., 77, 988 (2014). https://doi.org/10.1016/j.porgcoat.2014.02.003
  18. ASTM Standard D412, "Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension", Annual book of ASTM standard, 9, (1990).
  19. M. M. Rahman and H. D. Kim, "Characterization of waterborne polyurethane adhesives containing different soft segments", J. Adhes. Sci. Technol., 21, 81 (2007). https://doi.org/10.1163/156856107779976088
  20. S. M. Cakic, M. Spirkova, I. S. Ristic, J. K. B-Simendic, M. M-Cincovic, and R. Poreba, "The waterborne polyurethane dispersions based on polycarbonate diol: Effect of ionic content", Mater. Chem. Phys., 138, 277 (2013). https://doi.org/10.1016/j.matchemphys.2012.11.057
  21. V. Garcia-Pacios, V. Costa, M. Colera, and J. M. Martin-Martinez, "Waterborne polyurethane dispersions obtained with polycarbonate of hexanediol intended for use as coatings", Prog. Org. Coat., 71, 136 (2011). https://doi.org/10.1016/j.porgcoat.2011.01.006
  22. E. Y. Shin and H.J. Kim, "Effects of Neutralizers and Chain Extenders on the Properties of Cationic Polyurethane Water Dispersions", Polymer(Korea), 35, 171 (2011).
  23. Y. K. Jhon, I. W. Cheong, and J. H. Kim, "Chain extension study of aqueous polyurethane dispersions", Colloids. Surf. A. Physicochem. Eng. Asp., 179, 71 (2001). https://doi.org/10.1016/S0927-7757(00)00714-7
  24. O. Jaudouin, J. J. Robin, J. M. Lopez-Cuesta, D. Perrin, and C. Imbert, "Ionomer-based polyurethanes: a comparative study of properties and applications", Polym. Int., 61, 495 (2012). https://doi.org/10.1002/pi.4156
  25. S. M. Cakic, M. Spirkova, I. S. Ristic, J. K. B-Simendic, M. M-Cincovic, and R. Poreba, "The waterborne polyurethane dispersions based on polycarbonate diol: effect of ionic content", Mater. Chem. Phys., 138, 277 (2013). https://doi.org/10.1016/j.matchemphys.2012.11.057
  26. A. Eceiza, M. D. Martin, K. De La Caba, G. Kortaberria, N. Gabilondo, M. A. Corcuera, and I. Mondragon, "Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties", Polym. Eng. Sci., 48, 297 (2008). https://doi.org/10.1002/pen.20905
  27. G. Lligadas, J. C. Ronda, M. Galia, and V. Cadiz, "Poly(ether urethane) Networks from Renewable Resources as Candidate Biomaterials: Synthesis and Characterization", Biomacromolecules, 8, 686 (2007). https://doi.org/10.1021/bm060977h
  28. S. Subramani, J. M. Lee, I. W. Cheong, and J. H. Kim, "Synthesis and characterization of water-borne crosslinked silylated polyurethane dispersions", J. Appl. Polym. Sci., 98, 620 (2005). https://doi.org/10.1002/app.22071
  29. A. K. Mishra, S. Bose, T. Kuila, N. H. Kim, and J. H. Lee, "Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells", Prog. Polym. Sci., 37, 842 (2012). https://doi.org/10.1016/j.progpolymsci.2011.11.002
  30. D. W. Kang and Y. N. Yin, "Preparation and Properties of Polyorganosiloxane Modified Polyurethane Dispersion", Appl. Chem. Eng., 21, 46 (2010).