DOI QR코드

DOI QR Code

다변량 선형회귀분석을 이용한 증발접시계수 산정방법 적용성 검토

Evaluation of applicability of pan coefficient estimation method by multiple linear regression analysis

  • 임창수 (경기대학교 건설시스템공학 전공)
  • Rim, Chang-Soo (Department of Civil Engineering, Kyonggi University)
  • 투고 : 2022.01.17
  • 심사 : 2022.03.03
  • 발행 : 2022.03.31

초록

우리나라 11개 기상관측지역의 월별 기상자료가 증발접시계수에 미치는 영향을 분석하고, 증발접시계수 산정을 위한 4가지 형태의 다변량 선형회귀모형의 적용성을 검토하였다. 개발된 증발접시계수 산정모형의 적용성을 평가하기 위해서 기존에 다른 연구자들에 의해서 제안된 6가지의 모형과 비교 평가하였다. 우리나라 11개 기상관측지역에서 증발접시계수는 1, 2, 3, 7, 11, 12월은 기온에 가장 큰 영향을 받고, 다른 월들은 일사량에 가장 큰 영향을 받는 것으로 나타났다. 전반적으로 모든 월에서 풍속과 상대습도는 기온이나 일사량과 비교해서 증발접시계수에 큰 영향을 미치지 않는 것으로 나타났다. 모든 지역과 월에서 각 지역별로 5개의 독립변수(풍속, 상대습도, 기온, 일조시간과 가조시간의 비, 일사량)를 적용하여 유도된 모형이 가장 양호한 증발량 산정 결과를 보였다. 모형 검증결과에 의하면 다변량 선형회귀분석을 적용하여 증발접시계수를 산정하는 경우 일부 지역과 월에서 제한적으로 적용할 수 있을 것으로 판단된다.

The effects of monthly meteorological data measured at 11 stations in South Korea on pan coefficient were analyzed to develop the four types of multiple linear regression models for estimating pan coefficients. To evaluate the applicability of developed models, the models were compared with six previous models. Pan coefficients were most affected by air temperature for January, February, March, July, November and December, and by solar radiation for other months. On the whole, for 12 months of the year, the effects of wind speed and relative humidity on pan coefficient were less significant, compared with those of air temperature and solar radiation. For all meteorological stations and months, the model developed by applying 5 independent variables (wind speed, relative humidity, air temperature, ratio of sunshine duration and daylight duration, and solar radiation) for each station was the most effective for evaporation estimation. The model validation results indicate that the multiple linear regression models can be applied to some particular stations and months.

키워드

과제정보

이 논문은 2020학년도 경기대학교 연구년 수혜로 연구되었음.

참고문헌

  1. Allen, R.G., Peretira, L.S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, FAO, ISBN 92-5-104219-5, Rome, Italy.
  2. Allen, R.G., Smith, M., Perrier, A., and Periira, L.S. (1994). "An update for the definition of reference evapotranspiration." International Commission on Irrigation and Drainage Bulletin, Vol. 43, No. 2, pp. 1-34.
  3. Alvarez, V.M., Gonzalez-Real, M.M., Baile, A., and Martinez, M. (2007). "A novel approach for estimating the pan coefficient of irrigation water reservoirs: Application to South Spain." Agricultural Water Management, Vol. 92, pp. 29-40. https://doi.org/10.1016/j.agwat.2007.04.011
  4. Cho, H.-K. (1973). "On lake evaporation from climatological data in Korea." Journal of Korean Association of Hydrological Sciences, Vol. 6, pp. 5-12.
  5. Cuenca, R.H. (1989). Irrigation system design: An engineering approach. Prentice Hall, Eaglewood Cliffs, NJ, U.S.
  6. Doorenbos, J., and Pruitt, W.O. (1977). Crop water requirements. Rome, FAO, Irrigation and Drainage paper 24, Rome, Italy.
  7. Droogers, P., and Allen, R.G. (2002). "Estimating reference evapotranspiration under inaccurate data conditions." Irrigation and Drainage Systems, Vol. 16, No. 1, pp. 33-45. https://doi.org/10.1023/A:1015508322413
  8. Fontenot, R.L. (2004). An evaluation of reference evapotranspiration models in Louisina. M.S. Thesis, Louisina State University, LA, U.S., p. 83.
  9. Fu, G., Liu, C., Chen, S., and Hong, J. (2004). "Investigating the conversion coefficients for free water surface evaporation of different evaporation pans." Hydrological Processes, Vol. 18, pp. 2247-2262. https://doi.org/10.1002/hyp.5526
  10. Harbeck, G.E. (1958). "Water loss investigations Lake Mead studies." U.S. Geological Survey Professional Paper 298, US Government Printing Office, Washington, D.C., U.S.
  11. Hargreaves, G.H., and Samani, Z.A. (1985). "Reference crop evapotranspiration from temperature." Applied Engineering in Agriculture, Vol. 1, No. 1, pp. 96-99. https://doi.org/10.13031/2013.26773
  12. Irmak, S., Haman, D.Z, and Jones, J.W. (2002). "Evaluation of Class-A pan coefficients for estimating reference evapotranspiration in humid location." Journal of Irrigation and Drainage Engineering, Vol. 128, pp. 153-159. https://doi.org/10.1061/(ASCE)0733-9437(2002)128:3(153)
  13. Kim, S.-W. (2010). "Modeling of daily pan evaporation using the limited climatic variables and polynomial networks approach." Proceedings of Korea Water Resources Association, pp. 1596-1599.
  14. Makkink, G.F. (1957). "Testing the Penman formula by means of lysimeters." Journal of the Institution of Water Engineers, Vol. 11, pp. 277-288.
  15. Meyer, A.F. (1915). "Computing runoff from and other physical data." Transactions of the American Society of Civil Engineers, Vol. 79, pp. 1055-1155.
  16. Monteith, J.L. (1965). "Evaporation and environment." Symposia of the Society for Experimental Biology, Vol. 19, pp. 205-224.
  17. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models, 1. A discussion of principles." Journal of Hydrology, Vol. 10, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  18. Orang, M. (1998). Potential accuracy of the popular non-linear regression equations for estimating Pan coefficients values in the original and FAO-24 tables. Unpublished California Department of Water Resources Report, Sacramento, CA, U.S.
  19. Penman, H.L. (1948). "Natural evaporation from open water, bare soil and grass." Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 193, pp. 120-145.
  20. Pereira, A.R., Villanova, N., Pereira, A.S., and Barbieri, V.A. (1995). "A model for the Class-A pan coefficients." Agricultural Water Management, Vol. 76, pp. 75-82.
  21. Priestley, C.H.B., and Taylor, R.J. (1972). "On the assessment of the surface heat flux and evaporation using large-scale parameters." Monthly Weather Review, Vol. 100, pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  22. Raghuwanshi, N.S., and Wallender, W.W. (1998). "Converting from pan evaporation to evapotranspiration." Journal of Irrigation and Drainage Engineering, Vol. 124, pp. 275-277. https://doi.org/10.1061/(ASCE)0733-9437(1998)124:5(275)
  23. Rim, C.-S. (2020). "Developemnt of pan coefficient model for estimating evaporation: focused on Seoul station." Journal of Korea Water Resources Association, Vol. 53, No. 7, pp. 557-567. https://doi.org/10.3741/JKWRA.2020.53.7.557
  24. Rohwer, C. (1931). "Evaporation from free water surfaces." Technical Bulletin 271, US Department of Agriculture, Washington, D.C., U.S.
  25. Seo, Y.-M., and Kim, S.-W. (2018). "Pan evaporation modeling using multivariate adaptive regression splines." Proceedings of Korea Water Resources Association, pp. 351-354.
  26. Snyder, R. L. (1992). "Equation for evaporation pan to evapotranspiration conversions." Journal of Irrigation and Drainage Engineering, Vol. 118, No. 6, pp. 977-980. https://doi.org/10.1061/(ASCE)0733-9437(1992)118:6(977)
  27. Trajkovic, S. (2005). "Temperature-based approaches for estimating reference evapotranspiration." Journal of Irrigation and Drainage Engineering, Vol. 131, No. 4, pp. 316-323. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:4(316)