DOI QR코드

DOI QR Code

The Screen Efficiency Improving Effect Analysis by the Screen Motion Characteristic Analysis Applying Blockage Prevention Spring

막힘 방지 스프링 적용 스크린 운동 특성 분석을 통한 스크린 효율 개선 효과 분석

  • 이한솔 (과학기술연합대학원대학교 자원공학과) ;
  • 유명렬 (제로에미션) ;
  • 이훈 (한국지질자원연구원)
  • Received : 2022.09.23
  • Accepted : 2022.11.07
  • Published : 2022.12.31

Abstract

The general screen used to separate the particle size of recycled aggregate has restrictions when dealing with moisturized materials because of the blockage phenomenon. Therefore, in this study, to improve the separation efficiency of the conventional screen, the excellence of additional vibrating device based on spring was decided by a simulation experiment based on the discrete element method (DEM). The motion characteristic was investigated by analyzing the displacement, amplitude, and strain angle based on the spring design. Further, the particle motion was simulated by applying spring motion. The material flow and separation efficiency of the screen applied spring were confirmed as 9.2 kg/s and 97 %, respectively. Consequently, the improvement in the screen applied with blockage prevention spring was confirmed by comparing with the conventional screen.

순환골재 입도 분리를 위해 사용되는 일반적인 스크린은 막힘 현상으로 인해 함수 시료 처리가 제한적이다. 따라서 본 연구에서는 기존 스크린의 분리 효율을 개선하기 위하여, DEM(Discrete Element Method) 기반의 모사 실험을 통해 스프링 기반의 추가 보조 진동 장치의 우수성을 판단하였다. 스프링 디자인에 따른 변위, 진폭 및 변형 각 분석을 통해 운동 특성을 확인하였으며, 이를 스크린에 적용하여 입자의 거동을 모사하였다. 입자 모사 결과, 스프링이 적용된 스크린의 물질 흐름 및 분리 효율은 각각 9.2 kg/s, 97 %로 나타났으며, 기존 스크린과의 비교를 통해 막힘 방지 스프링의 적용은 기존 스크린을 개선할 수 있음을 확인하였다.

Keywords

Acknowledgement

본 연구는 환경부의 재원으로 한국환경산업기술원(KEITI)의 지원을 받아 수행한 연구과제입니다(No.202203490003).

References

  1. Raesun, P., Juseong, B., 2007 : An experimental research on the quality improvement of recycled aggregates using surface treatment method, KSCE Journal of Civil Engineering, 27(3), pp.421-426. 
  2. Seahyun, L,. 2005 : Policy of construction waste and recycled aggregates, pp.14-16, Magazine of the Korea Concrete Institute, Seoul. 
  3. Jaedong, J., Doheun, Lee, 2008 : A study for improvement of the testing methods for quality control of recycled aggregate, Journal of the Korea Institute of Building Construction, 8(4), pp.105-114.  https://doi.org/10.5345/JKIC.2008.8.4.105
  4. Gyeongsub, W., Jungho, K., Seahyun, L., et al., 2020 : A study on the quality properties when applying recycled aggregate concrete for the construction standard mitigation, Jorunal of the Korea Institute for Structural Maintenance and Inspection, 24(3), pp.63-69. 
  5. Daejoong, M., Wanjong, K., and Haksoo, K., 2010 : Improvement on the properties of recycled aggregate concrete using pozzolanic materials, Journal of the Korean Recycled Construction Resources Institute, (9), pp.117-124. 
  6. Wonyoung, C., Saehyun, L., and Seounghwan, K., 2017 : A comparative study on the quality of recycled aggregate for concrete by crushing method, Journal of the Korean Recycled Construction Resources Institute, 5(2), pp.121-129.  https://doi.org/10.14190/JRCR.2017.5.2.121
  7. Yongsun, H., Chunnam, P., 2015 : Quality improvement machine of Aggregates for concrete, pp.22-27, Magazine of RCR, Seoul 
  8. Chulsung, N., Jeongho, P., 2010 : Production facilities and manufacturing technology of recycled aggregate, Journal of the Korean Recycled Construction Resources Institute, 5(2), pp.15-20. 
  9. Lais, P., R., Pierluca, V., Carmenlucia, S.G.P., et al., 2017 : Life cycle assessment of natural and mixed recycled aggregate production in Brazil, Journal of Cleaner Production, 151(10), pp.634-642.  https://doi.org/10.1016/j.jclepro.2017.03.068
  10. Jaehyun, O., Misung, K., Heeduck, S., et al., 2008 : Recent status on the recycling or construction waste and research trends - The current situation of recycling technology for waste resources in Korea (4), The Korean Institute of Resources Recycling, 17(2), pp.16-29. 
  11. Byungyoung, M., Hyodong, B., Kwanghun, K., et al., 2008 : Vibration analysis of separation screen in a recycling plant of moisturized construction wastes, Korea Journal of Air-Conditioning and Refrigeration Engineering, 20(8), pp.526-533. 
  12. Standish, N., Bharadwaj, A. K., and Hariri-Akbari, G., 1986 : A study of the effect of operating variables on the efficiency of a vibrating screen, Powder Technology, 48(2), pp.161-172.  https://doi.org/10.1016/0032-5910(86)80075-4
  13. Guifeng, W., Xin, T., 2011 : Screening efficiency and screen length of a linear vibrating screen using DEM 3D simulation, Mining Science and Technology (China), 21(3), pp.451-455.  https://doi.org/10.1016/j.mstc.2011.05.026
  14. Blazej, D., Robert, K., 2022 : Industry Scale Optimization: Hammer Crusher and DEM Simulations, Minerlas, 12(2), pp.244-263. 
  15. da Cunha, E. R., de Carvalho, R. M., and Tavares, L. M., 2013 : Simulation of solids flow and energy transfer in a vertical shaft impact crusher using DEM, Minerlas Engineering, 43, pp.85-90. 
  16. Hansol, L., Kwanho, K., and Hoon, L., 2019 : Analysis of grinding kinetics in a laboratory ball mill using population-balance-model and discrete-element-method, Advanced Powder Technology, 30(11), pp.2517-2526.  https://doi.org/10.1016/j.apt.2019.07.030
  17. Bian, X., Guoquang, W., Hongdi, W., et al., 2017 : Effect of lifters and mill speed on particle behaviour, torque, and power consumption of a tumbling ball mill: Experimental study and DEM simulation, Minerals Engineering, 105, pp.22-35.  https://doi.org/10.1016/j.mineng.2016.12.014
  18. Chu, K., Chen, J., and Aibing, Y., 2016 : Applicability of a coarse-grained CFD-DEM model on dense medium cyclone, Minerlas Engineering, 90, pp.43-54.  https://doi.org/10.1016/j.mineng.2016.01.020
  19. Epaarachchi, J. A., 2011 : The effect of viscoelasticity on fatigue behaviour of polymer matrix composites, Creep and Fatigue in Polymer Matrix Composites, pp.492-513. 
  20. Mishra, B. K., Rajamani, R. K., 1992 : The discrete element method for the simulation of ball mills, Applied Mathematical Modelling, 16(11), pp.598-604. https://doi.org/10.1016/0307-904X(92)90035-2