DOI QR코드

DOI QR Code

하수슬러지 처리 실규모 중온 혐기성 소화조 미생물 군집 및 다양성 조사

Microbial Communities and Diversities in a Full-Scale Mesophilic Anaerobic Digester Treating Sewage Sludge

  • 김민재 (부경대학교 지구환경시스템과학부(환경공학전공)) ;
  • 박수인 (부산대학교 사회환경시스템공학과) ;
  • 이주윤 (부경대학교 지구환경시스템과학부(환경공학전공)) ;
  • 이혜빈 (부산대학교 사회환경시스템공학과) ;
  • 강선민 (부경대학교 지구환경시스템과학부(환경공학전공)) ;
  • 배효관 (울산과학기술원 도시환경공학과) ;
  • 이준엽 (부경대학교 지구환경시스템과학부(환경공학전공))
  • Minjae, Kim (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Suin, Park (Department of Social Environmental Systems Engineering, Pusan National University) ;
  • Juyun, Lee (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Hyebin, Lee (Department of Social Environmental Systems Engineering, Pusan National University) ;
  • Seonmin, Kang (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Hyokwan, Bae (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Joonyeob, Lee (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University)
  • 투고 : 2022.10.26
  • 심사 : 2022.11.29
  • 발행 : 2022.12.31

초록

This study investigated microbial communities and their diversity in a full-scale mesophilic anaerobic digester treating sewage sludge. Influent sewage sludge and anaerobic digester samples collected from a wastewater treatment plant in Busan were analyzed using high-throughput sequencing. It was found that the microbial community structure and diversity in the anaerobic digester could be affected by inoculation effect with influent sewage sludge. Nevertheless, distinct microbial communities were identified as the dominant microbial communities in the anaerobic digester. Twelve genera were identified as abundant bacterial communities, which included several groups of syntrophic bacteria communities, such as Candidatus Cloacimonas, Cloacimonadaceae W5, Smithella, which are (potential) syntrophic-propionate-oxidizing bacteria and Mesotoga and Thermovigra, which are (potential) syntrophic-acetate-oxidizing bacteria. Lentimicrobium, the most abundant genus in the anaerobic digester, may contribute to the decomposition of carbohydrates and the production of volatile fatty acids during the anaerobic digestion of sewage sludge. Of the methanogens identified, Methanollinea, Candidatus Methanofastidiosum, Methanospirillum, and Methanoculleus were the dominant hydrogenotrophic methanogens, and Methanosaeta was the dominant aceticlastic methanogens. The findings may be used as a reference for developing microbial indicators to evaluate the process stability and process efficiency of the anaerobic digestion of sewage sludge.

키워드

과제정보

이 논문은 2022년도 부산녹색환경지원센터의 연구사업비 지원을 받아 연구되었습니다(22-4-50-54). 또한 이 성과는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2021R1C1C1009122). 또한 본 연구는 환경부의 폐자원에너지화 전문인력양성사업으로 지원되었습니다 (YL-WE-21-002).

참고문헌

  1. Ahring, B. K., Sandberg, M., Angelidaki, I., 1995, Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Appl. Microbiol. Biotechnol., 43, 559-565. https://doi.org/10.1007/BF00218466
  2. Cai, M., Wilkins, D., Chen, J., Ng, S. K., Lu, H., Jia, Y., Lee, P. K., 2016, Metagenomic reconstruction of key anaerobic digestion pathways in municipal sludge and industrial wastewater biogas-producing systems. Front. Microbiol., 7, 778.
  3. Callahan, B. J., McMurdie, P. J., Holmes, S. P., 2017, Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J., 11, 2639-2643. https://doi.org/10.1038/ismej.2017.119
  4. Carballa, M., Regueiro, L., Lema, J. M., 2015, Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr. Opin. Biotechnol., 33, 103-111. https://doi.org/10.1016/j.copbio.2015.01.008
  5. de Bok, F. A. M., Stams, A. J. M., Dijkema, C., Boone, D. R., 2001, Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl. Environ. Microbiol., 67, 1800-1804. https://doi.org/10.1128/AEM.67.4.1800-1804.2001
  6. Dyksma, S. Gallert, C., 2019, Candidatus Syntrophosphaera thermopropionivorans: a novel player in syntrophic propionate oxidation during anaerobic digestion. Environ. Microbiol. Rep. 11, 558-570. https://doi.org/10.1111/1758-2229.12759
  7. Han, G., Shin, S. G., Cho, K., Lee, J., Kim, W., Hwang, S., 2019, Temporal variation in bacterial and methanogenic communities of three full-scale anaerobic digesters treating swine wastewater. Environ. Sci. Pollut. Res. Int., 26, 1217-1226. https://doi.org/10.1007/s11356-017-1103-y
  8. Han, G., Shin, S. G., Lee, J., Shin, J., Hwang, S., 2017, A Comparative study on the process efficiencies and microbial community structures of six full-scale wet and semi-dry anaerobic digesters treating food wastes. Bioresour. Technol., 245, 869-875. https://doi.org/10.1016/j.biortech.2017.08.167
  9. Herlemann, D. P. R., Labrenz, M., Jurgens, K., Bertilsson, S., Waniek, J. J., Andersson, A. F., 2011, Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J., 5, 1571-1579. https://doi.org/10.1038/ismej.2011.41
  10. Le, T. N. T., Lee, J., 2021, Effect of ammonia load on microbial communities in mesophilic anaerobic digestion of propionic acid. J. Environ. Sci. Int., 30, 1093-1100. https://doi.org/10.5322/JESI.2021.30.12.1093
  11. Lee, J., Kim, E., Han, G., Tongco, J. V., Shin, S. G., Hwang, S., 2018, Microbial communities underpinning mesophilic anaerobic digesters treating food wastewater or sewage sludge: A full-scale study. Bioresour. Technol., 259, 388-397. https://doi.org/10.1016/j.biortech.2018.03.052
  12. Lee, J., Shin, S. G., Han, G., Koo, T., Hwang, S., 2017, Bacteria and archaea communities in full-scale thermophilic and mesophilic anaerobic digesters treating food wastewater: Key process parameters and microbial indicators of process instability. Bioresour. Technol., 245, 689-697. https://doi.org/10.1016/j.biortech.2017.09.015
  13. MoE., 2021, Statistics of sewerage, Ministry of Environment, Korea.
  14. Nobu, M. K., Narihiro, T., Rinke, C., Kamagata, Y., Tringe, S. G., Woyke, T., Liu, W. T., 2015, Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. ISME J., 9, 1710-1722. https://doi.org/10.1038/ismej.2014.256
  15. Pelletier, E., Kreimeyer, A., Bocs, S., Rouy, Z., Gyapay, G., Chouari, R., Riviere, D., Ganesan, A., Daegelen, P., Sghir, A., Cohen, G. N., Medigue, C., Weissenbach, J., Le Paslier, D., 2008, Candidatus Cloacamonas acidaminovorans: genome sequence reconstruction provides a first glimpse of a new bacterial division. J. Bacteriol., 190, 2572-2579. https://doi.org/10.1128/JB.01248-07
  16. Riviere, D., Desvignes, V., Pelletier, E., Chaussonnerie, S., Guermazi, S., Weissenbach, J., Li, T., Camacho, P., Sghir, A., 2009, Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J., 3, 700-714. https://doi.org/10.1038/ismej.2009.2
  17. Shin, S. G., Han, G., Lee, J., Shin, J., Hwang, S., 2019a, A Snapshot of microbial community structures in 20 different field-scale anaerobic bioreactors treating food waste. J. Environ. Manage., 248, 109297.
  18. Shin, J., Cho, S. K., Lee, J., Hwang, K., Chung, J. W., Jang, H. N., Shin, S. G., 2019b, Performance and microbial community dynamics in anaerobic digestion of waste activated sludge: impact of immigration. Energies, 12, 573.
  19. Singh, A., Schnurer, A., Westerholm, M., 2021, Enrichment and description of novel bacteria performing syntrophic propionate oxidation at high ammonia level. Environ. Microbiol., 23, 1620-1637. https://doi.org/10.1111/1462-2920.15388
  20. Spellerberg, I. F., Fedor, P. J., 2003, A Tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the 'Shannon-Wiener' Index. Glob. Ecol. Biogeogr., 12, 177-179. https://doi.org/10.1046/j.1466-822X.2003.00015.x
  21. Sun, L., Toyonaga, M., Ohashi, A., Tourlousse, D. M., Matsuura, N., Meng, X. Y., Tamaki, H., Hanada, S., Cruz, R., Yamaguchi, T., Sekiguchi, Y., 2016, Lentimicrobium saccharophilum gen. nov., sp. nov., a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. nov. Int. J. Syst. Evol. Microbiol., 66, 2635-2642. https://doi.org/10.1099/ijsem.0.001103
  22. Sutcliffe, I. C., 2010, A Phylum level perspective on bacterial cell envelope architecture. Trends Microbiol., 18, 464-470.
  23. Tongco, J. V., Kim, S., Oh, B. R., Heo, S. Y., Lee, J., Hwang, S., 2020, Enhancement of hydrolysis and biogas production of primary sludge by use of mixtures of protease and lipase. Biotechnol. Bioprocess Eng., 25, 132-140. https://doi.org/10.1007/s12257-019-0302-4
  24. Yu, Y., Lee, C., Kim, J., Hwang, S., 2005, Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng., 89, 670-679. https://doi.org/10.1002/bit.20347
  25. Zhen, G., Lu, X., Kato, H., Zhao, Y., Li, Y. Y., 2017, Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sust. Energ. Rev., 69, 559-577. https://doi.org/10.1016/j.rser.2016.11.187