DOI QR코드

DOI QR Code

Synergistic Anti-Tumor Effect by the Combination of Cyclophosphamide and Dendritic Cell Vaccination in Murine Tumor Model that CEA Expressing

CEA 발현 마우스 종양모델에서 Cyclophosphamide와 수지상세포 백신의 병합치료에 의한 상승적인 항종양 효과

  • Park, Mi-Young (Department of Clinical Laboratory Science, Suwon Science College)
  • 박미영 (수원과학대학교 임상병리과)
  • Received : 2021.11.09
  • Accepted : 2021.12.24
  • Published : 2022.03.31

Abstract

Carcinoembryonic antigen (CEA) is an oncofetal antigen primarily detected in the peripheral blood of cancer patients, particularly in those with colorectal cancer. CEA is considered a valuable target for antigen-specific immunotherapy. In this study, we induced the anti-tumor immunity for CEA through the administration of a dendritic cell (DC) vaccine. However, there was a limitation in inducing tumor regression in the DC vaccinated mice. To enhance the efficacy of anti-tumor immunity in MC38/CEA2 tumor-bearing mice, we evaluated the effects of DC vaccine in combination with cyclophosphamide (CYP). Administration of CYP 100 mg/kg in mice resulted in significant inhibition of tumor growth in the 2-day tumor model, whereas a lower inhibition of tumor growth was seen in the 10-day tumor model. Therefore, the 10-day tumor model was selected for testing chemo-immunotherapy. The combined CYP and DC vaccine not only increased tumor antigen-specific immune responses but also induced synergistic anti-tumor immunity. Furthermore, the adverse effects of CYP such as weight loss and immunosuppression by regulatory T cells and myeloid-derived suppressor cells showed a significant reduction in the combined chemo-immunotherapy treatment compared with CYP alone. Our data suggest that chemoimmunotherapy with the DC vaccine may offer a new therapeutic strategy to induce a potent anti-tumor effect and reduce the adverse effects of chemotherapy.

Carcinoembryonic antigen (CEA)는 다양한 종양에서 발현되는 자가 항원으로 면역치료에서 강력한 표지 인자이며 면역치료를 위한 표적 종양항원으로 널리 알려져 있다. 그러나 수지상세포 단독 치료는 동물모델에서 종양의 발생을 억제하는 데 효과가 있지만 이미 확립된 종양을 제거하는 데는 한계가 있다. 본 연구에서는 항종양 면역 효과를 증가시키기 위하여 화학치료제인 cyclophosphamide (CYP)와 종양 특이 면역치료법인 수지상세포 백신의 병합치료 효과를 CEA를 발현하는 마우스 종양 모델에서 검증하였다. 종양세포 주입 후 2일 소종양군과 10일 대종양군에서 CYP의 항종양 효과를 비교한 결과, 소종양군에서는 100 mg/kg에서 뚜렷한 종양 성장의 억제 효과가 관찰되었지만 대종양군에서는 약한 억제 효과가 관찰되어 본 연구에서는 대종양군을 병합치료의 적합한 모델로 설정하였다. CYP 와 수지상세포 백신의 병합치료(화학면역치료) 시 종양항원 특이 면역반응이 증가되었을 뿐만 아니라 상승적인 항종양 효과가 나타났다. 또한 CYP 치료에서 나타나는 체중 감소 및 조절 T세포와 골수유래 억제세포의 증가에 의한 면역억제는 화학면역치료에 의해 개선되었다. 항원 특이 면역치료를 병합한 화학면역치료가 화학치료의 부작용을 감소시키고 항종양 효과를 증가시킬 수 있는 치료 전략이 될 수 있을 것이다.

Keywords

Acknowledgement

This article is based on a part of the first author's master's thesis from University.

References

  1. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18: 175-196. https://doi.org/10.1038/s41573-018-0006-z
  2. Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun. 2019;10:5408. https://doi.org/10.1038/s41467-019-13368-y
  3. Santos PM, Butterfield LH. Dendritic cell-based cancer vaccines. J Immunol. 2018;200:443-449. https://doi.org/10.4049/jimmunol.1701024
  4. Wold WS, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther. 2013;13: 421-433. https://doi.org/10.2174/1566523213666131125095046
  5. Thompson JA, Grunert F, Zimmermann W. Carcinoembryonic antigen gene family: molecular biology and clinical perspectives. J Clin Lab Anal. 1991;5:344-366. https://doi.org/10.1002/jcla.1860050510
  6. Alters SE, Gadea JR, Sorich M, O'Donoghue G, Talib S, Philip R. Dendritic cells pulsed with CEA peptide induce CEA-specific CTL with restricted TCR repertoire. J Immunother. 1998;21:17-26. https://doi.org/10.1097/00002371-199801000-00002
  7. Schmitz J, Reali E, Hodge JW, Patel A, Davis G, Schlom J, et al. Identification of an interferon-r-inducible carcinoembryonic antigen (CEA) CD8+ T-cell epitope, which mediates tumor killing in CEA transgenic mice. Cancer Res. 2002;62:5058-5064.
  8. Zhang C, Wang Z, Yang Z, Wang M, Li S, Li Y, et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA + metastatic colorectal cancers. Mol Ther. 2017;25:1248-1258. https://doi.org/10.1016/j.ymthe.2017.03.010
  9. Thistlethwaite FC, Gilham DE, Guest RD, Rothwell DG, Pillai M, Burt DJ, et al. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol Immunother. 2017;66: 1425-1436. https://doi.org/10.1007/s00262-017-2034-7
  10. Katz SC, Hardaway J, Prince E, Guha P, Cunetta M, Moody A, et al. HITM-SIR: phase Ib trial of intraarterial chimeric antigen receptor T-cell therapy and selective internal radiation therapy for CEA + liver metastases. Cancer Gene Ther. 2020;27:341-355. https://doi.org/10.1038/s41417-019-0104-z
  11. Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, et al. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res. 2015;21:3149-3159. https://doi.org/10.1158/1078-0432.CCR-14-1421
  12. Asanvaroengchai W, Kotera Y, Mule JJ. Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during early lumphoid recovery. Proc Natl Acad Sci USA. 2002;99:931-936. https://doi.org/10.1073/pnas.022634999
  13. Bitton RJ. Cancer vaccines: a critical review on clinical impact. Curr Opin Mol Ther. 2004;6:17-26.
  14. Fu C, Zhou L, Mi QS, Jiang A. DC-based vaccines for cancer immunotherapy. Vaccines (Basel). 2020;8:706. https://doi.org/10.3390/vaccines8040706
  15. Radford KJ, Tullett KM, Lahoud MH. Dendritic cells and cancer immunotherapy. Curr Opin Immunol. 2014;27:26-32. https://doi.org/10.1016/j.coi.2014.01.005
  16. Bol KF, Schreibelt G, Rabold K, Wculek SK, Schwarze JK, Dzionek A, et al. The clinical application of cancer immunotherapy based on naturally circulating dendritic cells. J Immunother Cancer. 2019;7:109. https://doi.org/10.1186/s40425-019-0580-6
  17. Timmerman JM, Levy R. Dendritic cell vaccine for cancer immunotherapy. Annu Rev Med. 1999;50:507-529. https://doi.org/10.1146/annurev.med.50.1.507.
  18. Greenberg PD. Adoptive T cell therapy of tumors: mechanism operative in the recognition and elimination of tumor cells. Adv Immunol. 1991;49:281-355. https://doi.org/10.1016/s0065-2776(08)60778-6
  19. Proietti E, Greco G, Garrone B, Baccarini S, Mauri C, Venditti M, et al. Importance cyclophosphamide-induced bystander effect on T cell for a successful tumor eradication in response to adoptive transfer in mice. J Clin Invest. 1998;101:429-441. https://doi.org/10.1172/JCI1348
  20. Vierboom MP, Bos GM, Ooms M, Offringa R, Melief CJ. Cyclophosphamide enhances anti-tumor effect of wild-type p53-specific CTL. Int J Cancer. 2000;87:253-260. https://doi.org/10.1002/1097-0215(20000715)87:2<253::aid-ijc17>3.0.co;2-a
  21. Choi JS, Heo JH, Kim DJ, Namkung SM, Lee TB, Lee MW, et al. Anti-cancer effect of hot water extract from mycelium in germanium-enriched Cordyceps militaris. Korean J Clin Lab Sci. 2017;49:69-78. https://doi.org/10.15324/kjcls.2017.49.2.69
  22. Hermans IF, Chong TW, Palmowski MJ, Harris AL, Cerundolo V. Synergistic effect of metrodosing of cyclophosphamide combined with specific antitumor immunotherapy in a murine melanoma model. Cancer Res. 2003;63:8408-8413.
  23. Maryam P, Cynthia SC, Laura JG, Catriona M, Catherine L, Kimberly G, et al. Successful adoptive immunotherapy with vaccine-sensitized T cells, despite no effect with vaccination alone in a weekly immunogenic tumor model. Cancer Immunol Immunother. 2003;52:739-750. https://doi.org/10.1007/s00262-003-0405-8
  24. Movahedi K, Guilliams M, Bossche JV, Bergh RV, Gysemans C, Beschin A, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T-cell suppressive activity. Blood. 2008;111:4233-4244. https://doi.org/10.1182/blood-2007-07-099226
  25. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, et al. Altered recognition of antigen is a novel mechanism of CD8+T cell tolerance in cancer. Nat Med. 2007;13:828-835. https://doi.org/10.1038/nm1609
  26. Kusmartsev S, Nagaraj S, Gabrilovich DI. Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol. 2005;175:4583-4592. https://doi.org/10.4049/jimmunol.175.7.4583
  27. Saleh R, Elkord E. FoxP3+ T regulatory cells in cancer: prognostic biomarkers and therapeutic targets. Cancer Lett. 2020;490:174-185. https://doi.org/10.1016/j.canlet.2020.07.022
  28. Marangoni F, Zhakyp A, Corsini M, Geels SN, Carrizosa E, Thelen M, et al. Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell. 2021;184: 3998-4015. https://doi.org/10.1016/j.cell.2021.05.027