DOI QR코드

DOI QR Code

A Newly Synthesized Flavone from Luteolin Escapes from COMT-Catalyzed Methylation and Inhibits Lipopolysaccharide-Induced Inflammation in RAW264.7 Macrophages via JNK, p38 and NF-κB Signaling Pathways

  • Ye, Lin (School of Pharmacy, Changzhou University) ;
  • Xin, Yang (Food Science and Technology Program, Department of Chemistry, Faculty of Science, National University of Singapore) ;
  • Wu, Zhi-yuan (Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore) ;
  • Sun, Hai-jian (Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore) ;
  • Huang, De-jian (Food Science and Technology Program, Department of Chemistry, Faculty of Science, National University of Singapore) ;
  • Sun, Zhi-qin (Changzhou Second People's Hospital)
  • Received : 2021.04.20
  • Accepted : 2021.05.25
  • Published : 2022.01.28

Abstract

Luteolin is a common dietary flavone possessing potent anti-inflammatory activities. However, when administrated in vivo, luteolin becomes methylated by catechol-O-methyltransferases (COMT) owing to the catechol ring in the chemical structure, which largely diminishes its anti-inflammatory effect. In this study, we made a modification on luteolin, named LUA, which was generated by the chemical reaction between luteolin and 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Without a catechol ring in the chemical structure, this new flavone could escape from the COMT-catalyzed methylation, thus affording the potential to exert its functions in the original form when administrated in the organism. Moreover, an LPS-stimulated RAW cell model was applied to detect the anti-inflammatory properties. LUA showed much more superior inhibitory effect on LPS-induced production of NO than diosmetin (a major methylated form of luteolin) and significantly suppressed upregulation of iNOS and COX-2 in macrophages. LUA treatment dramatically reduced LPS-stimulated reactive oxygen species (ROS) and mRNA levels of pro-inflammatory mediators such as IL-1β, IL-6, IL-8 and IFN-β. Furthermore, LUA significantly reduced the phosphorylation of JNK and p38 without affecting that of ERK. LUA also inhibited the activation of NF-κB through suppression of p65 phosphorylation and nuclear translocation.

Keywords

Acknowledgement

This work was supported by the Science and Technology Project of Changzhou City (Grant No. CE20215028).

References

  1. Yeom M, Kim JH, Min JH, Hwang MK, Jung HS, Sohn Y. 2015. Xanthii fructus inhibits inflammatory responses in LPS-stimulated RAW 264.7 macrophages through suppressing NF-kappaB and JNK/p38 MAPK. J. Ethnopharmacol. 176: 394-401. https://doi.org/10.1016/j.jep.2015.11.020
  2. Erwig LP, Rees AJ. 1999. Macrophage activation and programming and its role for macrophage function in glomerular inflammation. Kidney Blood Press. Res. 22: 21-25. https://doi.org/10.1159/000025905
  3. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. 1999. Phylogenetic perspectives in innate immunity. Science 284: 1313-1318. https://doi.org/10.1126/science.284.5418.1313
  4. King GL. 2008. The role of inflammatory cytokines in diabetes and its complications. J. Periodontol. 79: 1527-1534. https://doi.org/10.1902/jop.2008.080246
  5. Kundu JK, Surh YJ. 2008. Inflammation: gearing the journey to cancer. Mutat. Res. 659: 15-30. https://doi.org/10.1016/j.mrrev.2008.03.002
  6. Manzi S, Wasko MC. 2000. Inflammation-mediated rheumatic diseases and atherosclerosis. Ann. Rheum. Dis. 59: 321-325. https://doi.org/10.1136/ard.59.5.321
  7. Balkwill F, Mantovani A. 2001. Inflammation and cancer: Back to Virchow? Lancet 357: 539-545. https://doi.org/10.1016/S0140-6736(00)04046-0
  8. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. 2004. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79: 727-747. https://doi.org/10.1093/ajcn/79.5.727
  9. Feng X, Qin H, Shi Q, Zhang Y, Zhou F, Wu H, et al. 2014. Chrysin attenuates inflammation by regulating M1/M2 status via activating PPARgamma. Biochem. Pharmacol. 89: 503-514. https://doi.org/10.1016/j.bcp.2014.03.016
  10. Ruiz PA, Haller D. 2006. Functional diversity of flavonoids in the inhibition of the proinflammatory NF-kappaB, IRF, and Akt signaling pathways in murine intestinal epithelial cells. J. Nutr. 136: 664-671. https://doi.org/10.1093/jn/136.3.664
  11. Qian LB, Wang HP, Chen Y, Chen FX, Ma YY, Bruce IC, et al. 2010. Luteolin reduces high glucose-mediated impairment of endothelium-dependent relaxation in rat aorta by reducing oxidative stress. Pharmacol. Res. 61: 281-287. https://doi.org/10.1016/j.phrs.2009.10.004
  12. Jennings A, Welch AA, Spector T, Macgregor A, Cassidy A. 2014. Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J. Nutr. 144: 202-208. https://doi.org/10.3945/jn.113.184358
  13. Lin Y, Shi R, Wang X, Shen HM. 2008. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets 8: 634-646. https://doi.org/10.2174/156800908786241050
  14. Liu CW, Lin HW, Yang DJ, Chen SY, Tseng JK, Chang TJ, et al. 2016. Luteolin inhibits viral-induced inflammatory response in RAW264.7 cells via suppression of STAT1/3 dependent NF-kappaB and activation of HO-1. Free Radic. Biol. Med. 95: 180-189. https://doi.org/10.1016/j.freeradbiomed.2016.03.019
  15. Wolfle U, Esser PR, Simon-Haarhaus B, Martin SF, Lademann J, Schempp CM. 2011. UVB-induced DNA damage, generation of reactive oxygen species, and inflammation are effectively attenuated by the flavonoid luteolin in vitro and in vivo. Free Radic. Biol. Med. 50: 1081-1093. https://doi.org/10.1016/j.freeradbiomed.2011.01.027
  16. Pratheeshkumar P, Son YO, Divya SP, Roy RV, Hitron JA, Wang L, et al. 2014. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways. Toxicol. Appl. Pharmacol. 281: 230-241. https://doi.org/10.1016/j.taap.2014.10.008
  17. Kwon EY, Jung UJ, Park T, Yun JW, Choi MS. 2015. Luteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity. Diabetes 64: 1658-1669. https://doi.org/10.2337/db14-0631
  18. Seelinger G, Merfort I, Schempp CM. 2008. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med. 74: 1667-1677. https://doi.org/10.1055/s-0028-1088314
  19. Hu C, Kitts DD. 2004. Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264.7 cells. Mol. Cell. Biochem. 265: 107-113. https://doi.org/10.1023/B:MCBI.0000044364.73144.fe
  20. Wu W, Li D, Zong Y, Zhu H, Pan D, Xu T, et al. 2013. Luteolin inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability. Molecules 18: 8083-8094. https://doi.org/10.3390/molecules18078083
  21. Fei J, Liang B, Jiang C, Ni H, Wang L. 2019. Luteolin inhibits IL-1beta-induced in fl ammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model. Biomed. Pharmacother. 109: 1586-1592. https://doi.org/10.1016/j.biopha.2018.09.161
  22. Chen Z, Tu M, Sun S, Kong S, Wang Y, Ye J, et al. 2012. The exposure of luteolin is much lower than that of apigenin in oral administration of Flos Chrysanthemi extract to rats. Drug Metab. Pharmacokinet. 27: 162-168. https://doi.org/10.2133/dmpk.DMPK-11-RG-081
  23. Guldberg HC, Marsden CA. 1975. Catechol-O-methyl transferase: pharmacological aspects and physiological role. Pharmacol. Rev. 27: 135-206.
  24. Nissinen E, Tuominen R, Perhoniemi V, Kaakkola S. 1988. Catechol-O-methyltransferase activity in human and rat small intestine. Life Sci. 42: 2609-2614. https://doi.org/10.1016/0024-3205(88)90330-X
  25. Schultz E. 1991. Catechol-O-methyltransferase and aromatic L-amino acid decarboxylase activities in human gastrointestinal tissues. Life Sci. 49: 721-725. https://doi.org/10.1016/0024-3205(91)90104-J
  26. Mannisto PT, Kaakkola S. 1999. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol. Rev. 51: 593-628.
  27. Meloto CB, Segall SK, Smith S, Parisien M, Shabalina SA, Rizzatti-Barbosa CM, et al. 2015. COMT gene locus: new functional variants. Pain 156: 2072-2083. https://doi.org/10.1097/j.pain.0000000000000273
  28. Chen ZJ, Dai YQ, Kong SS, Song FF, Li LP, Ye JF, et al. 2013. Luteolin is a rare substrate of human catechol-O-methyltransferase favoring a para-methylation. Mol. Nutr. Food Res. 57: 877-885. https://doi.org/10.1002/mnfr.201200584
  29. Chen Z, Chen M, Pan H, Sun S, Li L, Zeng S, et al. 2011. Role of catechol-O-methyltransferase in the disposition of luteolin in rats. Drug Metab. Dispos. 39: 667-674. https://doi.org/10.1124/dmd.110.037333
  30. Wang L, Chen Q, Zhu L, Li Q, Zeng X, Lu L, et al. 2017. Metabolic Disposition of Luteolin is mediated by the interplay of UDP-Glucuronosyltransferases and Catechol-O-Methyltransferases in rats. Drug Metab. Dispos. 45: 306-315. https://doi.org/10.1124/dmd.116.073619
  31. Ha SK, Lee JA, Cho EJ, Choi I. 2017. Effects of Catechol O-Methyl Transferase inhibition on anti-inflammatory activity of luteolin metabolites. J. Food Sci. 82: 545-552. https://doi.org/10.1111/1750-3841.13620
  32. Parashos SA, Wielinski CL, Kern JA. 2004. Frequency, reasons, and risk factors of entacapone discontinuation in Parkinson disease. Clin. Neuropharmacol. 27: 119-123. https://doi.org/10.1097/00002826-200405000-00006
  33. Assal F, Spahr L, Hadengue A, Rubbia-Brandt L, Burkhard PR. 1998. Tolcapone and fulminant hepatitis. Lancet 352: 958.
  34. Olanow CW. 2000. Tolcapone and hepatotoxic effects. Tasmar advisory panel. Arch. Neurol. 57: 263-267. https://doi.org/10.1001/archneur.57.2.263
  35. DeLeo FR, Renee J, McCormick S, Nakamura M, Apicella M, Weiss JP, et al. 1998. Neutrophils exposed to bacterial lipopolysaccharide upregulate NADPH oxidase assembly. J. Clin. Invest. 101: 455-463. https://doi.org/10.1172/JCI949
  36. Keller JN, Hanni KB, Gabbita SP, Friebe V, Mattson MP, Kindy MS. 1999. Oxidized lipoproteins increase reactive oxygen species formation in microglia and astrocyte cell lines. Brain Res. 830: 10-15. https://doi.org/10.1016/S0006-8993(99)01272-X
  37. Kaminska B. 2005. MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta. 1754: 253-262. https://doi.org/10.1016/j.bbapap.2005.08.017
  38. Kim YS, Ahn CB, Je JY. 2016. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-kappaB and MAPK pathways. Food Chem. 202: 9-14. https://doi.org/10.1016/j.foodchem.2016.01.114
  39. Liu F, Zhang X, Ling P, Liao J, Zhao M, Mei L, et al. 2017. Immunomodulatory effects of xanthan gum in LPS-stimulated RAW 264.7 macrophages. Carbohydr. Polym. 169: 65-74. https://doi.org/10.1016/j.carbpol.2017.04.003
  40. Shan J, Fu J, Zhao Z, Kong X, Huang H, Luo L, et al. 2009. Chlorogenic acid inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 cells through suppressing NF-kappaB and JNK/AP-1 activation. Int. Immunopharmacol. 9: 1042-1048. https://doi.org/10.1016/j.intimp.2009.04.011
  41. Ajizian SJ, English BK, Meals EA. 1999. Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-gamma. J. Infect. Dis. 179: 939-944. https://doi.org/10.1086/314659
  42. Aziz N, Kim MY, Cho JY. 2018. Anti-inflammatory effects of luteolin: a review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 225: 342-358. https://doi.org/10.1016/j.jep.2018.05.019
  43. Cao Y, Chen ZJ, Jiang HD, Chen JZ. 2014. Computational studies of the regioselectivities of COMT-catalyzed meta-/para-O methylations of luteolin and quercetin. J. Phys. Chem. B. 118: 470-481. https://doi.org/10.1021/jp410296s
  44. Eisenhofer G, Kopin IJ, Goldstein DS. 2004. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol. Rev. 56: 331-349. https://doi.org/10.1124/pr.56.3.1
  45. Kopin IJ. 1985. Catecholamine metabolism: basic aspects and clinical significance. Pharmacol. Rev. 37: 333-364.
  46. Dooley MM, Sano N, Kawashima H, Nakamura T. 1990. Effects of 2,2'-azobis (2-amidinopropane) hydrochloride in vivo and protection by vitamin E. Free Radic. Biol. Med. 9: 199-204. https://doi.org/10.1016/0891-5849(90)90028-H
  47. Muraoka S, Miura T. 2002. Protection by estrogens of biological damage by 2,2'-azobis(2-amidinopropane) dihydrochloride. J. Steroid Biochem. Mol. Biol. 82: 343-348. https://doi.org/10.1016/S0960-0760(02)00216-9
  48. Kanazawa K, Uehara M, Yanagitani H, Hashimoto T. 2006. Bioavailable flavonoids to suppress the formation of 8-OHdG in HepG2 cells. Arch. Biochem. Biophys. 455: 197-203. https://doi.org/10.1016/j.abb.2006.09.003
  49. Edenharder R, Grunhage D. 2003. Free radical scavenging abilities of flavonoids as mechanism of protection against mutagenicity induced by tert-butyl hydroperoxide or cumene hydroperoxide in Salmonella typhimurium TA102. Mutat. Res. 540: 1-18. https://doi.org/10.1016/S1383-5718(03)00114-1
  50. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. 2002. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 50: 4437-4444. https://doi.org/10.1021/jf0201529
  51. Zuvela P, David J, Yang X, Huang D, Wong MW. 2019. Non-Linear quantitative structure(-) activity relationships modelling, mechanistic study and in-silico design of flavonoids as potent antioxidants. Int. J. Mol. Sci. 20: 2328. https://doi.org/10.3390/ijms20092328
  52. Kumar KJ, Yang HL, Tsai YC, Hung PC, Chang SH, Lo HW, et al. 2013. Lucidone protects human skin keratinocytes against free radical-induced oxidative damage and inflammation through the up-regulation of HO-1/Nrf2 antioxidant genes and downregulation of NF-kappaB signaling pathway. Food Chem. Toxicol. 59: 55-66. https://doi.org/10.1016/j.fct.2013.04.055
  53. Zeinali M, Rezaee SA, Hosseinzadeh H. 2017. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed. Pharmacother. 92: 998-1009. https://doi.org/10.1016/j.biopha.2017.06.003
  54. Manthey JA, Grohmann K, Guthrie N. 2001. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem. 8: 135-153. https://doi.org/10.2174/0929867013373723
  55. Lee JO, Jeong D, Kim MY, Cho JY. 2015. ATP-binding pocket-targeted suppression of Src and Syk by luteolin contributes to its anti-inflammatory action. Mediators Inflamm. 2015: 967053.
  56. Park CM, Jin KS, Lee YW, Song YS. 2011. Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-kappaB translocation in LPS stimulated RAW 264.7 cells. Eur. J. Pharmacol. 660: 454-459. https://doi.org/10.1016/j.ejphar.2011.04.007
  57. Park CM, Song YS. 2013. Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-kappaB/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells. Nutr. Res. Pract. 7: 423-429. https://doi.org/10.4162/nrp.2013.7.6.423
  58. Park CM, Park JY, Noh KH, Shin JH, Song YS. 2011. Taraxacum officinale Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NF-kappaB modulation in RAW 264.7 cells. J. Ethnopharmacol. 133: 834-842. https://doi.org/10.1016/j.jep.2010.11.015
  59. Biswas SK. 2016. Does the Interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell. Longev. 2016: 5698931. https://doi.org/10.1155/2016/5698931
  60. Gao B, Tsukamoto H. 2016. Inflammation in alcoholic and nonalcoholic fatty liver disease: friend or foe? Gastroenterology 150: 1704-1709. https://doi.org/10.1053/j.gastro.2016.01.025
  61. Lam P, Cheung F, Tan HY, Wang N, Yuen MF, Feng Y. 2016. Hepatoprotective effects of chinese medicinal herbs: a focus on anti-inflammatory and anti-oxidative activities. Int. J. Mol. Sci. 17: 465. https://doi.org/10.3390/ijms17040465
  62. Ambade A, Mandrekar P. 2012. Oxidative stress and inflammation: essential partners in alcoholic liver disease. Int. J. Hepatol. 2012: 853175. https://doi.org/10.1155/2012/853175
  63. Robak J, Shridi F, Wolbis M, Krolikowska M. 1988. Screening of the influence of flavonoids on lipoxygenase and cyclooxygenase activity, as well as on nonenzymic lipid oxidation. Pol. J. Pharmacol. Pharm. 40: 451-458.
  64. Brown JE, Rice-Evans CA. 1998. Luteolin-rich artichoke extract protects low density lipoprotein from oxidation in vitro. Free Rradic. Res. 29: 247-255. https://doi.org/10.1080/10715769800300281
  65. Zhang T, Wu W, Li D, Xu T, Zhu H, Pan D, et al. 2014. Anti-oxidant and anti-apoptotic effects of luteolin on mice peritoneal macrophages stimulated by angiotensin II. Int. Immunopharmacol. 20: 346-351. https://doi.org/10.1016/j.intimp.2014.03.018
  66. Xu Q, Liu M, Liu Q, Wang W, Du Y, Yin H. 2017. The inhibition of LPS-induced inflammation in RAW264.7 macrophages via the PI3K/Akt pathway by highly N-acetylated chitooligosaccharide. Carbohydr. Polym. 174: 1138-1143. https://doi.org/10.1016/j.carbpol.2017.07.051
  67. Lee JA, Song HY, Ju SM, Lee SJ, Kwon HJ, Eum WS, et al. 2009. Differential regulation of inducible nitric oxide synthase and cyclooxygenase-2 expression by superoxide dismutase in lipopolysaccharide stimulated RAW 264.7 cells. Exp. Mol. Med. 41: 629-637. https://doi.org/10.3858/emm.2009.41.9.069
  68. Bhat NR, Zhang P, Lee JC, Hogan EL. 1998. Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J. Neurosci. 18: 1633-1641. https://doi.org/10.1523/JNEUROSCI.18-05-01633.1998
  69. Hambleton J, Weinstein SL, Lem L, DeFranco AL. 1996. Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc. Nat. Acad. Sci. USA 93: 2774-2778. https://doi.org/10.1073/pnas.93.7.2774
  70. Hommes DW, Peppelenbosch MP, van Deventer SJ. 2003. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 52: 144-151. https://doi.org/10.1136/gut.52.1.144
  71. Chen D, Bi A, Dong X, Jiang Y, Rui B, Liu J, et al. 2014. Luteolin exhibits anti-inflammatory effects by blocking the activity of heat shock protein 90 in macrophages. Biochem. Biophys. Res. Commun. 443: 326-332. https://doi.org/10.1016/j.bbrc.2013.11.122
  72. Milanovic M, Kracht M, Schmitz ML. 2014. The cytokine-induced conformational switch of nuclear factor kappaB p65 is mediated by p65 phosphorylation. Biochem. J. 457: 401-413. https://doi.org/10.1042/BJ20130780
  73. Qian Z, Wu Z, Huang L, Qiu H, Wang L, Li L, et al. 2015. Mulberry fruit prevents LPS-induced NF-kappaB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice. Sci. Rep. 5: 17348. https://doi.org/10.1038/srep17348
  74. Perkins ND. 2007. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nature reviews. Mol. Cell Biol. 8: 49-62.
  75. Karin M, Ben-Neriah Y. 2000. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Ann. Rev. Immunol. 18: 621-663. https://doi.org/10.1146/annurev.immunol.18.1.621
  76. Gloire G, Legrand-Poels S, Piette J. 2006. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem. Pharmacol. 72: 1493-1505. https://doi.org/10.1016/j.bcp.2006.04.011
  77. Sung J, Lee J. 2015. Anti-inflammatory activity of Butein and Luteolin through suppression of NFkappaB activation and induction of heme oxygenase-1. J. Med. Food 18: 557-564. https://doi.org/10.1089/jmf.2014.3262
  78. Xia MZ, Liang YL, Wang H, Chen X, Huang YY, Zhang ZH, et al. 2012. Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells. J. Pineal Res. 53: 325-334. https://doi.org/10.1111/j.1600-079X.2012.01002.x