Acknowledgement
This work was financially supported by the System of MOF and MARA, Agricultural Science and Technology Innovation Program of Jilin Province (C02100308), the Basic Scientific Research Projects of Jilin Academy of Agricultural Sciences (KYJF2021ZR016) and the 2018 Funding Plan for Introducing High-level Scientific and Technological Innovation Talents to Jilin scientific research institutes (2060399) in China.
References
- Takashima A. 2009. Amyloid-beta, tau, and dementia. J. Alzheimers Dis. 17: 729-736. https://doi.org/10.3233/JAD-2009-1090
- Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G. 2000. Oxidative stress in Alzheimer's disease. Biochim. Biophys. Acta 1502: 139-144. https://doi.org/10.1016/S0925-4439(00)00040-5
- Heneka MT, Carson MJ, Khoury JE, Landreth GE, Brosseron F, Feinstein DL, et al. 2015. Neuroinflammation in Alzheimer's disease. Lancet Neurol.14: 388-405. https://doi.org/10.1016/S1474-4422(15)70016-5
- Jiang C, Li G, Huang P, Liu Z, Zhao B. 2017. The gut microbiota and Alzheimer's disease. J. Alzheimers Dis. 58: 2018.
- George Kerry R, Patra JK, Gouda S, Park Y, Shin H-S, Das G. 2018. Benefaction of probiotics for human health: A review. J. Food Drug Anal. 26: 927-939. https://doi.org/10.1016/j.jfda.2018.01.002
- Kobayashi Y, Sugahara H, Shimada K, Mitsuyama E, Kuhara T, Yasuoka A, et al. 2017. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer's disease. Sci. Rep. 7: 13510. https://doi.org/10.1038/s41598-017-13368-2
- Bonfili L, Cecarini V, Cuccioloni M, Angeletti M, Berardi S, Scarpona S, et al. 2018. SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol. Neurobiol. 55: 7987-8000. https://doi.org/10.1007/s12035-018-0973-4
- Cao J, Yu Z, Liu W, Zhao J, Zhang H, Zhai Q, et al. 2020. Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. J. Funct. Foods 64: 103643. https://doi.org/10.1016/j.jff.2019.103643
- Madempudi R, Ahire J, Neelamraju J, Tripathi A, Nanal S. 2019. Randomized clinical trial: the effect of probiotic Bacillus coagulans unique IS2 vs. placebo on the symptoms management of irritable bowel syndrome in adults. Sci. Rep. 9: 12210. https://doi.org/10.1038/s41598-019-48554-x
- La Rosa M, Bottaro G, Gulino N, Gambuzza F, Di Forti F, Ini G, et al. 2003. Prevention of antibiotic-associated diarrhea with Lactobacillus sporogens and fructo-oligosaccharides in children. a multicentric double-blind vs placebo study. Minerva Pediatr. 55: 447-452.
- Fitzpatrick L, Small J, Greene W, Karpa K, Farmer S, Keller D. 2012. Bacillus coagulans GBI-30, 6086 limits the recurrence of clostridium difficile-induced colitis following vancomycin withdrawal in mice. Gut Pathog. 4: 13. https://doi.org/10.1186/1757-4749-4-13
- Minamida K, Nishimura M, Miwa K, Nishihira J. 2015. Effects of dietary fiber with Bacillus coagulans lilac-01 on bowel movement and fecal properties of healthy volunteers with a tendency for constipation. Biosci. Biotechnol. Biochem. 79: 300-306. https://doi.org/10.1080/09168451.2014.972331
- Majeed M, Nagabhushanam K, Arumugam S, Majeed S, Ali F. 2018. Bacillus coagulans MTCC 5856 for the management of major depression with irritable bowel syndrome: a randomised, double-blind, placebo controlled, multi-centre, pilot clinical study. Food Nutr. Res. 62:2018.
- Venkataraman R, Madempudi R, Neelamraju J, Ahire J, Vinay H, Lal A, et al. 2021. Effect of multi-strain probiotic formulation on students facing examination stress: a double-blind, placebo-controlled study. Probiotics Antimicrob. Proteins 13: 12-18. https://doi.org/10.1007/s12602-020-09681-4
- Wang Q, Shen Y, Wang X, Fu S, Zhang X, Zhang Y, et al. 2020. Lactobacillus plantarum concomitant memantine and treatment attenuates cognitive impairments in APP/PS1 mice. Aging 12: 628-649. https://doi.org/10.18632/aging.102645
- Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji O, et al. 2016. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double-blind and controlled trial. Front. Aging Neurosci. 8: 256.
- Grady C, Furey M, Pietrini P, Horwitz B, Rapoport S. 2001. Altered brain functional connectivity and impaired short-term memory in Alzheimer's disease. Brain 124: 739-756. https://doi.org/10.1093/brain/124.4.739
- Abulfadl Y, El-Maraghy N, Ahmed A, Nofal S, Badary O. 2018. Protective effects of thymoquinone on D-galactose and aluminum chloride induced neurotoxicity in rats: biochemical, histological and behavioral changes. Neurol. Res. 40: 324-333. https://doi.org/10.1080/01616412.2018.1441776
- Serrano-Pozo A, Frosch M, Masliah E, Hyman B. 2011. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 1: a006189. https://doi.org/10.1101/cshperspect.a006189
- Varadarajan S, Yatin S, Aksenova M, Butterfield D. 2000. Review: Alzheimer's amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J. Struct. Biol. 130: 184-208. https://doi.org/10.1006/jsbi.2000.4274
- Haider S, Liaquat L, Ahmad S, Batool Z, Siddiqui R, Tabassum S, et al. 2020. Naringenin protects AlCl3/D-galactose induced neurotoxicity in rat model of AD via attenuation of acetylcholinesterase levels and inhibition of oxidative stress. PLoS One 15: e0227631. https://doi.org/10.1371/journal.pone.0227631
- Jensen GS, Cash HA, Farmer S, Keller D. 2017. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro. J. Inflamm. Res. 10: 107-117. https://doi.org/10.2147/JIR.S141660
- Nyangale E, Farmer S, Cash H, Keller D, Chernoff D, Gibson G. 2015. Bacillus coagulans GBI-30, 6086 modulates faecalibacterium prausnitzii in older men and women. J. Nutr. 145: 1446-1452. https://doi.org/10.3945/jn.114.199802
- Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, et al. 2007. Role of the Toll-like receptor 4 in neuroinflammation in Alzheimer's disease. Cell Physiol. Biochem. 20: 947-956. https://doi.org/10.1159/000110455
- Lim J, Kou J, Song M, Pattanayak A, Jin J, Lalonde R, et al. 2011. MyD88 deficiency ameliorates β-amyloidosis in an animal model of Alzheimer's disease. Am. J. Pathol. 179: 1095-1103. https://doi.org/10.1016/j.ajpath.2011.05.045
- Lim J-E, Song M, Jin J, Kou J, Pattanayak A, Lalonde R, et al. 2012. The effects of MyD88 deficiency on exploratory activity, anxiety, motor coordination, and spatial learning in C57BL/6 and APPswe/PS1dE9 mice. Behav. Brain Res. 227: 36-42. https://doi.org/10.1016/j.bbr.2011.10.027
- Drouin-Ouellet J, LeBel M, Filali M, Cicchetti F. 2012. MyD88 deficiency results in both cognitive and motor impairments in mice. Brain Behav. Immun. 26: 880-885. https://doi.org/10.1016/j.bbi.2012.02.007
- Kanninen K, Malm TM, Jyrkkanen H-K, Goldsteins G, Keksa-Goldsteine V, Tanila H, et al. 2008. Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol. Cell. Neurosci. 39: 302-313. https://doi.org/10.1016/j.mcn.2008.07.010
- Ramsey C, Glass C, Montgomery M, Lindl K, Ritson G, Chia L, et al. 2007. Expression of Nrf2 in neurodegenerative diseases. J. Neuropathol. Exp. Neuroldlq. 66: 75-85. https://doi.org/10.1097/nen.0b013e31802d6da9
- Rojo A, Pajares M, Rada P, Nunez A, Nevado-Holgado A, Killik R, et al. 2017. Nrf2 deficiency replicates transcriptomic changes in Alzheimer's patients and worsens APP and tau pathology. Redox biol. 13: 444-451. https://doi.org/10.1016/j.redox.2017.07.006
- Jazwa A, Cuadrado A. 2010. Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Curr. Drug Targets 11: 1517-1531. https://doi.org/10.2174/1389450111009011517